Maths planning document

Teagues Bridge Primary school

$$
2023 \text { - Year } 3
$$

Written on:	$30^{\text {th }}$ March 2020
Reviewed on:	March 2023
Next review:	March 2024
Staff Responsibility	Mr M Hale
Governor responsibility	Drew White

This document supported by the CLIC maths program providing teaching and consolidation of mental strategies for mathematics and the white rose small steps for teaching sequences. Weeks are a guideline and should be adapted for the needs of the children. Time for consolidation is designed for recapping of previous units to ensure learning in committed to the long-term memory. This can also be used to teach areas of misconceptions.

Mathematics \ln tent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.
Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/ problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

Year 3 - Yearly Overview

	$\begin{array}{l\|l} \text { E. } & \text { N } \\ \text { B } & \text { है } \\ \text { B } \end{array}$	$\begin{aligned} & m \\ & \text { N } \\ & \text { si } \end{aligned}$	$\begin{aligned} & \pm \\ & \frac{ \pm}{8} \\ & 3 \end{aligned}$		$\begin{aligned} & \bullet \\ & \stackrel{H}{8} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{N}{8} \\ & 3 \end{aligned}$		$\begin{gathered} \sigma \\ \stackrel{\rightharpoonup}{8} \\ 3 \end{gathered}$	$\begin{aligned} & \text { 은 } \\ & \stackrel{y}{8} \\ & 3 \end{aligned}$		$\begin{aligned} & \text { N } \\ & \stackrel{\text { N }}{8} \end{aligned}$	¢	+
$\begin{aligned} & \text { 走 } \\ & \hline \end{aligned}$	Number and place value Counting, reading, writing and partitioning	Addition and subtraction to 1000 (adding and subtracting I's 10 's and 100 's) and 3 digit numbers no exchange			Multiplication and division - repeated addition of equal groups $X 3, x+$ and $\times 8$ timestables				Fractions: unit fractions			Measurement: length	
$\begin{gathered} \frac{9}{5} \\ \frac{5}{6} \end{gathered}$	Number and place value : estimating, comparing and ordering	Addition and subtraction adding/ subtracting across 10 Adding/ subtracting 2 digit numbers			Multiplication: 2 by I digit number		Fractions: non unit fractions Fractions on a number line			Measureme $n t$: Perimeter	Measurement: Time		
$\begin{aligned} & \text { k } \\ & \text { जै } \end{aligned}$	Addition and subtraction Mixed add/ subtract, comparing/missing numbers	Divis dig	$2 \text { by I }$ bers	Fractions: adding and subtracting fractions		Measurement : Moiney		Grometry : shape		Measurement: Mass and capacity		Statistics	

Year 3: Autumn term

National curriculum objectives	Prior knowledge from year 2	Learning outcomes (including WR steps)	Mathematical aspect	Vocabulary	Manipulatives	Problem solving resources
- To read and write numbers up to 1000 in numerals and in words.	Knows to read and write numbers to 100	Maths resources for teachers \| White Rose Maths Steps 1 to 5 LO I know to represent numbers to IOO Lo I know to represent numbers to 1000	Place Value reading, writing and ordering two- and threedigit numbers	hundreds (IOOs) tens (IOs) ones (Is) place value	Place value charts Place value counters Base ten equipment Numicon	
- To recognise the place value of each digit in a three-digit number	Knows the properties of two-digit numbers	Steps 2, 4,7 and 8	Place Value partitioning	hundreds (IOOs) tens (IOs) ones (Is) place value	Place value charts Place value counters	How Would We Count?* Recognise the place value of each digit.

5 | Page

(hundreds, tens, ones).	Knows that numbers can be partitioned and rearranged	LO I know to partition numbers to 100 Lol know to partition numbers to 1000 Lo l know how to partition numbers to IOOO in different ways Lol know to represent 3 digit numbers using hundreds, tens and units.			(1) 10 Base ten equipment Numicon	$\begin{aligned} & \text { Coded Hundred } \\ & \text { Square }^{*} \end{aligned}$
- To count from 0 in multiples of 4 , 8,50 and 100 ,	Knows that counting can be done in varying step sizes.	Steps 3, 4, 9 and 10 . Lol know how to count in multiples on a number line Lol know to count in hundreds Lol know how to find one, ten and hundred more or less.	Place value counting in different steps.	hundreds (IOOs) tens (IOs) ones (ls) place value count	Place value charts Place value counters Base ten equipment	Take Three Numbers * 1 Planning a School Trip * Number Differences * G Sitting Round the Party Tables * Number Match

		Lo 1 know to count in different steps on a numberline.			

7 | Page

	20. Fact families for + and - Knows efficient strategies for adding and subtracting for up to two 2-digit numbers. Knows that addition is inverse to subtraction.	Lo I know to add I's across a 10 . Lol know to add 10 's across a 100 Lol know to subtract I's across a 10 Lo I know to subtract IO's across 100 . Lol know to make connections between addition and subtraction				
- To add and subtract numbers with up to three digits, using the efficient written methods of columnar addition and subtraction.	Knows the operation to use and chooses the efficient method. Knows facts to 100 using multiples of IO.	Steps II and Step I2 Lol know to add 2 numbers (no exchange) Lol know to subtract 2 numbers (no exchange)	Addition and subtraction written methods	addition subtraction mental method total column plus add minus take away count on	(1) 10 (100). 1000 Base ten equipment Numicon	Play to 37 * G Build it Up *I Finding Fifteen ** Domino Square ** Got It ** G Make 37 ** 0

8 | Page

- To recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.	Knows the odds and evens in the times tables for 2,5 and 10 . Knows table facts for 2,5 and 10 . Know the test of divisibility for 2, 5 and $I O$.	Maths resources for teachers / White Rose Maths Steps I-15 LO I know to make equal groups Lol know how to use arrays Lo l know to how calculate multiples of 2 Lol know how to calculate multiplies if 5 and 10 Lo I know sharing and grouping Lo I know to multiply by 3 Lo I know to divide by 3 Lol know and can recall my 3 times tables	Multiplication and division the facts	equal multiply divide times-table sharing grouping array bar model remainder repeated addition multiplication sentence division statement division fact	Place value counters (1) 10 (100) 1,000 Base ten equipment Numicon Multilink	Ordering Cards * G Music to My Ears

9 | Page

		Lo 1 know my 3 timestables Lo 1 know how to multiply by 4 Lo I know how to divide by 4 Lo 1 know the 4 times tables Lol know how to multiply by 8 Lol know how to divide by 8 Lol know the 8 times tables Lo I know the patterns within the 2, 4 and 8 timetables				
- Recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit	Knows that fractions are relative to the whole. Knows that fractions are equal parts to the whole.	Maths resources for teachers \| White Rose Maths Step 1, 3 and 4 LOI know what the denominator in a	Fractions - unit and non unit fractions: representing, comparing and ordering	equal parts whole unit fraction equation integer numerator denominator represent	Fraction tiles Cuisenaire rods	

10 | Page

fractions with small denominators	Knows simple equivalence in halves and quarters. Knows thirds are three equal parts of a whole.	unit fraction represents LOI know what the numerator in a nonunit fraction represents LO I know what the whole represents.		share group	Fractions circles	
- Compare and order unit fractions, and fractions with the same denominators	Knows that fractions of amounts can be calculated using multiplication and division facts	Maths resources for teachers \| White Rose Maths Steps 2 and 4 LO I know to compare and order unit fractions LO I know to compare and order non-unit fractions	Fractions - unit and non unit fractions: comparing and ordering	equal parts whole unit fraction equation integer numerator denominator represent share group		Fraction Match * G Matching Fractions ${ }^{*}$ G
- Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml)	Know how to measure a length, a mass, and a capacity in nonstandard units then standard units.	Maths resources for teachers / White Rose Maths Steps 1-9	Measurement : length	length height width perimeter distance centimetre (cm) millimetre (mm) metre (m)	ruler \square metre ruler	Olympic Starters * I Car Journey * Oh! Harry! **

Spring term planning

National curriculum objectives	Prior knowledge from year 2	Learning outcomes lincluding WR steps)	Mathematical aspect	Vocabulary	Manipulatives	Problem solving resources
To Identify. represent and estimate numbers using different representations	Knows the symbols of comparing numbers. Uses the skill of estimation.	Maths resources for teachers / White Rose Maths Steps II - LO To estimate numbers on a numberline to I,000	Number and place value: Estimating	more less greater than (>) less than (<) equal to order compare estimate exchange	Place value charts $\|\|\|\|\mid 1: ~$ Place value counters (1) 10 100 Base ten equipment Numicon	Take Three Numbers * Planning a School Trip * Number Differences * G Sitting Round the Party Tables * Number Match * G
Compare and order numbers up to 1,000	Compares and orders on a number line.	Steps - 12 and 14 LO To compare numbers to 1,000	Number and place value: comparing	more less greater than (>) less than (<) equal to		A Mixed-up Clock That Number Square! *

14 | Page

		LO To order numbers to 1,000 LO To count in 50's		order compare estimate exchange		Three Neighbours ** Magic Vs ** Square Subtraction ***
Add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction	Knows efficient strategies for adding and subtracting for up to two 2-digit numbers.	Maths resources for teachers \| White Rose Maths Steps 11 - 18 LO 1 know to add 2 numbers - no exchange LO- I know to subtract 2 numbers no exchange LO - I know to add 2 numbers - across 10 LO I know to add 2 numbers across IOO LOI know to subtract 2 digit numbers across 10	Number: addition and subtraction	addition subtraction mental method column method exchange	Place value counters (1) 10 100 Base ten equipment Numicon	Buying a Balloon Super Shapes * Strike it Out * G Dicey Addition * G Half Time * Play to 37 * \mathbf{G} Build it Up *I Finding Fifteen ** Domino Square ** Got It ** \mathbf{G} Make 37 ** Consecutive Numbers ** Dice in a Corner ${ }^{\star * *} 1$

		LO I know to subtract 2 numbers across 100 . LO I know to add 3 digit numbers LO I know to subtract 3 digit numbers				4 Dom ***
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2digit numbers times I-digit numbers, using mental and progressing to formal written methods	Knows table facts for 2,5 and IO.	Maths resources for teachers \| White Rose Maths Steps 4 to 9 Lo I know to multiply 2 digit by I digit number with no exchange Lo I know to multiply a 2 digit by 1 digit number with exchange Lol know the relationship between multiplication and division.	Number Multiplication: 2×1 digit	equal multiply divide times-table sharing grouping array bar model remainder repeated addition multiplication sentence division statement division fact	Multilink Place value counters (1) 10 Base ten equipment	A Square of Numbers * G What Do You Need? * Follow the Numbers ${ }^{\text {* }}$ I What's in the Box? * How Do You Do It? * Ip Dip *I Journeys in Numberland *I This Pied Piper of Hamelin **

		Lo 1 know to divide 2 digit by I digit with no exchange Lol know to divide 2 digit by I digit with regrouing Lo 1 know to divide a 2 digit by I digit number with remainders				
Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators	Knows that fractions are relative to the whole. Knows that fractions are equal parts to the whole.	Maths resources for teachers \| White Rose Maths Step 3 LO I know what the numerator in a nonunit fraction represents.	Fractions: non unit fractions.	equal parts whole unit fraction equation integer non-unit fraction numerator denominator represent share group mixed number whole number divide set of objects multiply tenth interval	Fraction tiles Cuisenaire rods Fractions circles Numicon	Fraction Match * G Matching Fractions ${ }^{*}$ G

17 | P a g e

Compare and order unit fractions, and fractions with the same denominators	Knows simple equivalence in halves and quarters. Knows thirds are three equal parts of a whole.	Step 5 LO I Know to compare and order unit fractions	Fractions: compare and order fractions	equal parts whole unit fraction	Fraction tiles	$\text { Fraction Match }{ }^{\text {* }}$
Recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators	Knows that fractions of amounts can be calculated using multiplication and division facts	Step 6 - 10 LO I know fractions and scales LO I know fractions on a number line LO I know how to count in fractions on a number line LO I know equivalent fractions on a number line LO I know equivalent fractions on a bar model.	Fractions equivalents	unit fraction equation integer non-unit fraction numerator denominator represent share group equivalent	Fraction tiles	$\begin{aligned} & \text { Matching } \\ & \text { Fractions } \end{aligned}$
Measure the perimeter of simple 2-D shapes	Know how to measure a length, a mass, and a capacity in nonstandard	Maths resources for teachers \| White Rose Maths Length and perimeter	Measurement : perimeter	length height width perimeter	ruler Helix	Olympic Starters * I Car Journey *I

18 | Page

	units then standard units.	Step IO to 12 LOI know what a perimeter is LO I know how to measure perimeter LO I know how to calculate perimeter		distance centimetre (cm) millimetre (mm) metre (m) unit of measurement measure	metre ruler metre wheel.	Oh! Harry! **
Tell and write the time from an analogue clock, including using Roman numerals from I to XII, and 12-hour and 24hour clocks	Know that time passes in cycles. Know the features of the clock face: hands, I to I2 positions, half past and o'clock.	Maths resources for teachers \| White Rose Maths Steps 1 - 5 LO I know Roman numerals to 12 LO I know to tell the time to 5 minute intervals LO I know to tell the time to 1 minute intervals LO I know to read time on a digital clock	Measurement : Time	month year midnight midday am pm duration estimate consecutive hour minute second past to start end duration digital clock analogue clock	Numberlines for counting time Digital display clocks	What Is the Time? Clocks * Two Clocks ** The Time Is ... ** 5 on the Clock *** I Approaching Midnight G

		LO I know how to use AM and PM				
Know the number of seconds in a minute and the number of days in each month, year and leap year	Knows the correct unit of measure and the equipment for each aspect of measurement.	Steps 6-7 and 10II LO I know years, months and days. LO I know days and hours LO I know minutes and seconds LO I know to convert between different units of time.	Measurement Time	past to start end month year hour minute second	Numberlines for counting time Digital display clocks	What Is the Time? Clocks * Two Clocks ** The Time Is ... ** 5 on the Clock *** Approaching Midnight G
Compare durations of events	Knows the correct unit of measure and the equipment for each aspect of measurement.	Steps $8-9$ and 12 LOI know Hours and minutes - using start and end times Lo I know hours and minutes - durations	Measurement: time	to start end duration		

		LO I know solving time problems			

Summer Term planning

National curriculum objectives	Prior knowledge from year 2	Learning outcomes (including WR steps)	Mathematical aspect	Vocabulary	Manipulatives	Problem solving resources
Add and subtract numbers mentally. including: - a 3-digit number and ones - a 3-digit number and tens - a 3-digit number and hundreds	Knows number bonds to and within 20 and to 100.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Step 19 LO I know complements to 100.	Addition and subtraction	addition subtraction mental method column method exchange making 100 number bonds	Place value counters (1) 10 100) 0000 Base ten equipment Numicon	Got It ** \mathbf{G} Make 37 ** Consecutive Numbers ** Dice in a Corner ${ }^{* * *}$ I 4 Dom ***
Estimate the answer to a calculation and	Knows the operation to use	Step 20	Addition and subtraction	addition subtraction		Build it Up *I

21 | Page

use inverse operations to check answers	and chooses the efficient method. Knows facts to 100 using multiples of 10	LO I know how to estimate answers. Step 21 LO I know to use the inverse operations		mental method column method exchange making 100 number bonds estimate inverse		$\frac{\text { Finding Fifteen }}{* *}$ Domino Square
Solve problems, including missing number problems, using number facts, place value, and more complex addition and subtraction	Knows efficient strategies for adding and subtracting for up to two 2-digit numbers mentally and with recording appropriate to the strategy chosen.	Step 22 Lo I know to chose the most efficient method to problem solve.	Addition and subtraction problem solving	addition subtraction mental method column method exchange making 100 number bonds estimate inverse		Buying a Balloon * Super Shapes * Strike it Out * G Dicey Addition * G Half Time *
Write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for 2digit numbers times I-digit numbers, using mental and progressing to formal written methods	Knows that multiplication is inverse to division. Know the test of divisibility for 2, 5 and 10 .	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) multiplication and division B Step 7-9 LO 1 know to divide 2 digit numbers by I digit (no exchange)	Division	equal multiply divide times-table sharing grouping array bar model remainder repeated addition multiplication sentence division statement division fact	Place value counters Base ten equipment Numicon	$\begin{aligned} & \text { Ordering Cards } \\ & { }^{\text {G G }} \\ & \frac{\text { Music to My }}{\text { Ears }{ }^{*} \text { I }} \end{aligned}$

		LO I know to divide 2 digit numbers by I digit (with exchange) Lo 1 know to divide 2 digit numbers with remainders				
Solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects	Know the test of divisibility for 2, 5 and 10 . 3 -digit sum of 3 , 6 or 9 .	Step IO - II LOI know how to scale problems LO I know how to find all possibilities	Multiplication and division problem solving	equal multiply divide times-table sharing grouping array bar model remainder repeated addition multiplication sentence division statement division fact	Place value counters Base ten equipment	A Square of Numbers * G What Do You Need? * Follow the Numbers * I What's in the Box? * How Do You Do It? * Ip Dip *I Journeys in Numberland * 1 This Pied Piper of Hamelin **

23 | Page

- To recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators.	Knows how to calculate halves and quarters in the context of length, mass and capacity.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Steps I to 6 LO I know to add fractions. LO I know to subtract fractions. LO I know to partition the whole into fractions. LO I know to find fractions of a set of objects. LOI know to find non-unit fractions of a set of objects. LO I know to find fractions of amounts.	Fractions: adding and subtracting fractions	equal parts whole unit fraction equation integer non-unit fraction numerator denominator represent share group mixed number whole number divide set of objects multiply tenth interval	Fraction tiles Cuisenaire rods Fractions circles Numicon	Fraction Match * G $\frac{\text { Matching }}{\text { Fractions }}{ }^{*}$ G
- Add and subtract amounts of money to give change, using both $£$ and p in practical contexts	Knows the standard units of measure for length, mass, and capacity.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Steps 1 to 5 LO I know the values of pounds and pence	Measurement: Money	pounds ($£$) and pence (p) convert total difference change		How Much Did it Cost? **

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & & & \\ \text { LO I know to convert } \\ \text { between pounds and pence }\end{array}\right]$

whether angles are greater than or less than a right angle		LO I know to compare angles				
- Measure the perimeter of simple 2-D shapes	Knows the standard units of measure for length, mass, and capacity	Step 4 LO I know to measure and draw accurately	Geometry : Drawing lines	Line accurate cm mm	ruler	
- Identify horizontal and vertical lines and pairs of perpendicular and parallel lines	Knows symmetry is reflection in a vertical line.	Steps 5 and 6 LO I know horizontal and vertical lines of symmetry LO I know lines that are parallel and perpendicular.	Geometry: parallel, perpendicular and lines of symmetry	Parallel, perpendicular. Horizontal, Vertical	Mirrors	Overlapping Again **
- Draw 2-D shapes and make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them	Know the mathematical names and properties of 2d and 3d shapes.	Steps 7 - 10 LO I know to recognise and draw 2D shapes LO I know to name and draw different 2D polygons LO I I know to recognise and draw 3 D shapes LOI know how to make 3D shapes	Geometry 2D and 3D shapes	triangle quadrilateral kite trapezium rhombus parallelogram cuboid triangular prism square-based pyramid cone cylinder sphere edge face	$2 D$ and $3 D$ shapes	Building Blocks Triple Cubes * I Stick Images * G $\frac{\text { Rolling That }}{\text { Cube }}$ $\frac{\text { A Puzzling Cube }}{\text { * }}$ Arranging $\underline{\text { Cubes }{ }^{*} \text { G }}$

26 | Page

				vertices clockwise anticlockwise		
- Measure, compare, add and subtract: lengths ($\mathrm{m} / \mathrm{cm} / \mathrm{mm}$); mass (kg/g); volume/capacity (l/ml)	Knows the relationships between units of measure for length, mass, and capacity Knows the standard units of measure for length, mass, and capacity.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Steps I - II LO I know to read and use different scales LO I know to measure mass in grams LO I know to measure mass in Kilograms and grams LO I know to find equivalent masses (kilograms and grams) LO I know to compare masses LOI know to add and subtract masses LO I know to measure capacity and volume in millilitres	Measurement: mass and capacity	mass weigh measure scale interval gram (g) kilogram (kg) capacity litre (l) millilitre (ml) scale interval convert	Non standard weights for measures	Olympic Starters * 1 Car Journey * I Oh! Harry! **

27 | Page

		LO I know to measure capacity and volume in litres and millilitres LO I know equivalent capacities and volumes		

28 | Page

		Lo I know to collect and present data in the most suitable way. LOI know how to draw and interpret 2 way tables.				Now and Then ** It's a Tie ** 1 Real Statistics

