Maths planning document

Teagues Bridge Primary school

 2023 - Year 4| Written on: | $30^{\text {th }}$ March 2020 |
| :--- | :--- |
| Reviewed on: | March 2023 |
| Next review: | March 2024 |
| Staff Responsibility | Mr M Hale |
| Governor responsibility | Drew White |

This document supported by the CLIC maths program providing teaching and consolidation of mental strategies for mathematics and the white rose small steps for teaching sequences. Weeks are a guideline and should be adapted for the needs of the children. Time for consolidation is designed for recapping of previous units to ensure learning in committed to the long-term memory. This can also be used to teach areas of misconceptions.

Mathematics \ln tent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.
Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/ problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

Year 4 －Yearly Overview

		$\begin{aligned} & m \\ & \frac{N}{5} \\ & 3 \end{aligned}$	$\begin{aligned} & \pm \\ & \stackrel{ \pm}{\circ} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \frac{\stackrel{1}{5}}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & \circ \\ & \frac{⿺ 𠃊}{8} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{N ゙}{8} \\ & \vdots \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{H}{8} \\ & 3 \end{aligned}$	$\begin{aligned} & \sigma \\ & \frac{N}{8} \\ & \$ \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { si } \\ & \$ \end{aligned}$	$\begin{aligned} & = \\ & \text { = } \\ & \text { B } \end{aligned}$	$\begin{aligned} & \cong \\ & \frac{N}{3} \\ & \$ \end{aligned}$	$\begin{aligned} & m \\ & \text { m } \\ & \text { B } \end{aligned}$	＋
\％	Number and place value Counting，reading， writing and partitioning	Addition and subtraction to 1000 （ $1,10,100$＇s） adding and subtracting methods		Multiplication and division－ repeated addition of equal groups $\times 6, \times 7 \times 9 \times 11$ and $\times 12$ times tables			Fractions：mixed and improper fractions and equivalent fractions			Measurement ：length and perimeter		Measurement：time	
$\begin{gathered} \frac{9}{2} \\ \frac{5}{6} \end{gathered}$	Number and place value ：estimating， comparing／ordering and rounding	Addition and subtraction adding／subtracting 3 digit addition and subtraction－ efficient methods			Multiplication：factors， multiplying and dividing by 10,100 and 1000		Multiplica division 3 by meth	tion and 1 written Is	Fractions adding and subtracting		Decimals ：tenths and hundredths		Measure ment ： Perimete r
b ぶ ぶ	Addition and subtraction Methods－ efficiency and checking	Multiplicat ion and Division－ 3 by 1 digit numbers Efficiency	Fraction s ： calculati ng with fraction s	Decimals：making a while， comparing，ordering and rounds			Geometry	Shape	Crometry ：position and direction		Measurement： Money		Statistic s

Year 4: Autumn term

National curriculum objectives	Prior knowledge from year 3	Learning outcomes (including WR steps)	Mathematical aspect	Vocabulary	Manipulatives	Problem solving resources
- Identify. represent and estimate numbers using different representations	Knows the properties of three-digit numbers. Knows how to count in step sizes and estimate numbers up to 1000	Maths resources for teachers \| White Rose Maths Steps I =4 \| know to represent numbers to 1000 I know to partition numbers to 1000 I know to show numbers to 1000 on a numberline I know how to represent thousands	Place Value representing and partitioning numbers	tens hundreds thousands partition numeral	Place value charts \| $111 \mid 1: 1$ Place value counters (1) 10 100 (.000 Base ten equipment	Nice or Nasty * G Dicey Operations * G The Deca Tree * Four-digit Targets Dicey Operations in Line * G
- Recognise the place value of each digit in a	Knows the properties of three-digit numbers.	Steps 5-9		tens hundreds thousands		

5 | Page

4-digit number (thousands, hundreds, tens and ones)	Knows how to count in step sizes and estimate numbers up to IOOO	I know to represent numbers to IO,OOO I know to partition numbers to IOOOO		partition numeral I know to partition numbers to IO,000 in different ways.	

		numbers (no exchange) LO I know to add two 4 digit numbers (one exchange) Lol know to add two 4 digit numbers (more than one exchange) Lol know to subtract two 4 digit numbers (no exchange) Lol know to subtract two 4 digit numbers (one exchange) Lol know to subtract two 4 digit numbers (

7 | Page

		more than one exchange)					
Both objectives to run through the unit - Recall multiplication and division facts for multiplication tables up to $12 \times$ 12 - Recognise and use factor pairs and commutativity in mental calculations	Knows the 2, 4and 8-times tables and the doubling patterns. Knows how to multiply using partitioning. Knows the 2, 3, 4and 8-times tables and the doubling patterns, odds, and evens. Knows tables facts for 2,3,4,5,8,10s.	Maths resources for teachers \| White Rose Maths Steps I - IO Lo I know to multiply by 3 Lo I know to multiply and divide by 6 LO I know the $6 x$ table and division facts LO I know to multiply and divide by 9 LO I know the 9_{x} tables and division facts Lo l know the relationship between 3 . 6 and 9 timestables	Multiplication and division facts $x 6, x 7, x 9, x \\|$ and $\times 12$	multiply divide times-table partition array bar model part-whole model remainder factor pair factor commutative lots of groups of	Base ten equipment Numicon multiplication grid	Times Tables Shifts ${ }^{*}$ G Multiplication Square Jigsaw ${ }^{*}$ G Shape Times Shape * Let Us Divide! *	

| | | Lo 1 know to multiply and divide by 7
 Lol know 7 timestables and division facts
 Lo I know \|| timestables and division facts
 Lo 1 know 12 timestable and division facts | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Recognise and show, using diagrams, families of common equivalent fractions | Knows that fractions are relative to the whole and can be represented in different ways. | Maths resources for teachers / White Rose Maths
 Steps I to IO
 Lol know what the whole represents
 Lol know to count beyond I in fractions
 Lo I know to partition a mixed number
 Lo l know to use number lines with mixed numbers | Fractions: mixed and improper : equivalent fractions | equivalent
 simplify
 numerator
 denominator
 fraction
 mixed number
 improper fraction
 simplest fraction | fraction tiles
 Cuisenaire rods
 Fractions circles
 Numicon | Fractional Wall *
 Fractional
 Triangles *
 Bryony's Triangle |

9 | Page

		Lol know to compare and order mixed numbers Lol know the representation of improper fractions Lo l know to convert mixed numbers to improper fractions Lol know to convert improper fractions to mixed number fractions Lo I know to represent equivalent fractions on a number line Lo I know equivalent fractions families.				
- Solve problems involving converting from hours to minutes, minutes to seconds, years	Knows the relationships between the units of measure for each aspect.	Maths resources for teachers / White Rose Maths Steps one and two LO I know to measure in Kilometres and metres	Measurement : length	length width centimetre (cm) metre (m) kilometre (km) equivalent to	Ruler \square Squared paper	Torn Shapes * I Twice as Big? *

10 | P a ge

to months, weeks to days		LO I know equivalent lengths (kilometres and metres)				
- Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetre and metres,	Knows how to add and subtract in the context of measures.	Maths resources for teachers / White Rose Maths Steps 3 to nine lo 1 know to find perimeters on a grid Lo I know perimeters of a rectangle. Lo I know perimeters of rectilinear shapes Lo I know to find missing lengths in the perimeters of rectilinear shapes lo I know to calculate the perimeter of rectilinear shapes Lo I know to calculate the perimeter of regular polygons	Measurement : perimeter	perimeter distance rectangle square rectilinear shape	Ruler Squared paper	Twice as Big? *

11 | Page

		Lo I know to calculate the perimeter of irregular polygons				
- Solve problems involving converting from hours to minutes, minutes to seconds, years to months, weeks to days	Knows how to read the time to the 5minute interval.	Maths resources for teachers / White Rose Maths Steps I and 2 Lo l know to convert between: years, months, weeks and days Lo l know to convert between hours, minutes and seconds	Measurement: time	o'clock half past quarter past quarter to minute hand hour hand duration 24 hour clock 12 hour clock	Number lines for counting time Digital display clocks	Matching Time * G
- Read, write and convert time between analogue and digital 12and 24-hour clocks	Knows how to read the time to the 5minute interval.	Steps 3 to 5 Lo l know to convert between analogue and digital times		o'clock half past quarter past quarter to minute hand hour hand duration		$\frac{\text { Stop the Clock }}{\mathrm{G}}{ }^{* * *}$

12 \| Page

| | Lo 1 know to convert to
 the 24hr clock
 Lo I know to convert
 from the 24hr clock | 24 hour clock
 12 hour clock | | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Year 4 Spring term

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline National curriculum objectives \& Prior knowledge from year 3 \& Learning outcomes (including WR steps) \& Mathematical aspect \& Vocabulary \& Manipulatives \& \& Problem solving resources \\
\hline \begin{tabular}{l}
- Identify. represent and estimate numbers using different representations \\
- Order and compare numbers beyond I,000
\end{tabular} \& \begin{tabular}{l}
Knows the properties of three-digit numbers. \\
Knows how to count in step sizes and estimate numbers up to 1000.
\end{tabular} \& \begin{tabular}{l}
Maths resources for teachers | White Rose Maths \\
(whiteroseeducation.com) \\
Steps 10 to 12 \\
LO I know to estimate numbers to 10,000 \\
LO To compare numbers to 10,000 \\
LO To order numbers to 10,000
\end{tabular} \& Place value: estimating/ ordering and rounding \& \begin{tabular}{l}
tens \\
hundreds \\
thousands \\
rounding \\
order \\
more than (\(>\)) \\
less than (\(<\)) \\
partition \\
numeral \\
nearest \\
distance
\end{tabular} \& \begin{tabular}{l}
Place value char \\
| || | | 1 \\
Place value count \\
(1) 10 \\
100 (1000) \\
Base ten equipmen
\end{tabular} \& \(i\)

rs \& | Nice or Nasty * G |
| :--- |
| Dicey Operations ${ }^{*} \mathbf{G}$ |
| The Deca Tree * |
| Four-digit Targets |
| Dicey Operations |
| in Line * G |

\hline Add and subtract numbers with up to four digits using the formal \& | Knows bonds to 20 and 100 . |
| :--- |
| Knows how to add/subtract | \& Maths resources for teachers | White Rose Maths \& Adding and subtracting : 4 digit numbers \& | addition |
| :--- |
| total |
| subtraction |
| column method | \& | Place value char \||1111 |
| :--- |
| Place value count | \& \& | Fifteen Cards * I |
| :--- |
| Money Bags ** |

\hline
\end{tabular}

14 | Page

written methods of columnar addition and subtraction where appropriate	multiples of 10 , 100 from threedigit numbers.	Steps I-7 (recap and consolidation of efficient written methods) Lo 1 know to add and subtract I's, IO's, IOO's and 1000's Lo 1 know to add upto two 4 digit numbers (no exchange) LO I know to add two 4 digit numbers (no exchange) LO I know to add two 4 digit numbers (one exchange) Lo l know to add two 4 digit numbers (more than one exchange)	estimate how much strategy efficient accurate	(1) 10 100) 1.000 Base ten equipment	Amy's Dominoes Sealed Solution ** Roll These Dice ** I

| | | Lo I know to subtract
 two 4 digit numbers (
 no exchange)
 Lo I know to subtract
 two 4 digit numbers (
 one exchange) | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

16 | Page

						Times Tables Shifts ${ }^{*}$ G The Remainders Game *G Remainders **
- Recall multiplication and division facts for multiplication tables up to $12 \times$ 12 - Multiply and divide whole numbers and those involving decimals by 10,100 and I,000 (Y5)	Knows how to multiply/divide two-digit numbers by one-digit numbers using expanded or formal written methods of short multiplication and division	Steps 3-6 LO I know multiplying by 10 LO I know Multiplying by 100 LO I know dividing by IO LO I Know dividing by 100	Multiplication and division: Multiplying and dividing by 10 and 100.	Place holder Place value ten times bigger ten times smaller hundred times bigger hundred times smaller		Table Patterns Go Wild! ** I Satisfying Four Statements *
- Solve problems involving multiplying and adding, including using the distributive law to multiply 2-digit numbers by I digit,	Knows how to multiply/divide two-digit numbers by one-digit numbers using expanded or formal written methods of short	Step 7 LO I know relating multiplication and division facts	Multiplication Problem solving	multiply divide times-table partition array bar model part-whole model	Bar model Base ten equipment	Table Patterns Go Wild! ** I Satisfying Four Statements * The Remainders Game * G

17 | Page

integer scaling problems and harder correspondence problems such as n objects are connected to m objects	multiplication and division			remainder factor pair factor commutative lots of groups of		Remainders **	
- Multiply 2-digit and 3-digit numbers by a $1-$ digit number using formal written layout	Knows how to multiply/divide two-digit numbers by one-digit numbers using expanded or formal written methods of short multiplication and division	Steps $9-13$ LO 1 know to multiply 2 digit by I digit numbers LO I know to multiply 3 digit by I digit numbers LO I know to divide 2 digit by I digit numbers LO I know to divide 3 digit by I digit numbers	Multiplication and division: formal written method	multiply divide times-table partition array bar model part-whole model remainder factor pair factor commutative lots of groups of	multiplication grid	Shape Times Shape * Let Us Divide! * Carrying Cards *	
- Add and subtract fractions with the same denominator	Knows how to add and subtract within the same denominator.	Maths resources for teachers \\| White Rose Maths (whiteroseeducation.com) Fractions	Fractions: adding and subtracting	equivalent simplify numerator denominator	Cuisenaire rods	Andy's Marbles ** Fractions in a Box ** Chocolate ** I	

		Step II - 15 LO To add fractions of the same denominator LO to add mixed numbers of the same denominator LO To subtract two fractions of the same denominator LO To subtract fractions from whole amounts LO To subbract from mixed numbers		fraction mixed number improper fraction simplest fraction		
- Recognise and write decimal equivalents of any number of tenths or hundredths	Knows how to connect tenths to place value, decimal measures and to division by 10 .	Decimals Steps I-4 LO I know to express tenths as fractions. LO I know to express tenths as decimals. Lo I know to express tenths on a place value chart. Lo 1 know how to express tenths on a number line.	Decimals: tenths and hundredths	tenths hundredths decimal point 0.1 and 0.01 equivalent whole number rounding greater than (>) less than ($<$) equal to ($=$) order compare convert decimal place ascending descending	Place value counters (1) 10 (100) 1000 Base ten equipment	Round the Dice Decimals 1 *

Measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres	Knows how to measure accurately reading the marked divisions in the appropriate units	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Length and perimeter Steps 3 to 9 LO I know to find perimeters on a grid LO I know to find perimeters of a rectangle LO I know to find perimeters of rectilinear shapes LO I know to find missing lengths of rectilinear shapes LO I know to calculate missing lengths of rectilinear shapes LO I know to calculate the perimeter of regular polygons LO I know to find the perimeter of any regular polygon.	Measurement : perimeter	length width perimeter distance rectangle square rectilinear shape centimetre (cm) metre (m) kilometre (km) equivalent to	Ruler Helix Squared paper	Torn Shapes * I Twice as Big? *

Year 4 Summer term

National curriculum objectives	Prior knowledge from year 3	Learning outcomes (including WR steps)	Mathematical aspect	Vocabulary	Manipulatives	Problem solving resources
Add and subtract numbers with up to four digits using the formal written methods of columnar addition and subtraction where appropriate	Adding numbers upto three digits.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Steps 8 - 10 LO I know to use efficient methods Lo I know to estimate addition and subtraction. Lo I know to use the inverse to solve problems	Addition and subtraction	addition total subtraction column method estimate how much strategy efficient accurate	Place value charts Place value counters (1) 10 Base ten equipment Numicon	Sealed Solution ** Roll These Dice ** I

- Solve problems involving multiplying and adding, including using the distributive law to multiply 2digit numbers by I digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects	Multiplying 2×1 digit numbers Recall of multiplication facts.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Recap steps $9-12$ where needed Steps 14 and 15 LOI know to solve correspondence problems LO I know to use efficient multiplication methods	Multiplication and division	multiply divide times-table partition array bar model part-whole model remainder factor pair factor commutative lots of groups of	Numicon multiplication grid \square	Times Tables $\underline{\text { Shifts }}{ }^{*}$ G Table Patterns Go Wild! ${ }^{* *}$ I Satisfying Four Statements ${ }^{*}$ The Remainders Game ${ }^{*}$ G Remainders ${ }^{* *}$
- Add and subtract fractions with the same denominator	Knows how to add and subtract within the same denominator.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Recap calculating with fractions LO I know to add fractions	Fractions calculating fractions	equivalent simplify numerator denominator fraction mixed number improper fraction simplest fraction	Cuisenaire rods Fractions circles	Andy's Marbles Fractions in a Box ** Chocolate ** I

		LO I know to subtract fractions				
- Find the effect of dividing a 1 or 2-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths	Knows how to connect tenths to place value, decimal measures and to division by 10 .	Decimals A Steps 5-6 Step 5 - I know to divide a one digit number by 10 Step 6 - I know to divide a two digit number by 10	Decimals - A	tenths hundredths decimal point 0.1 and 0.01 equivalent whole number rounding greater than (>) less than (<) equal to (=) order compare convert decimal place ascending descending	Place value charts Place value counters Base ten equipment	Round the Dice Decimals 1* I
- Count up and down in hundredths; recognise that hundredths	Knows how to connect tenths to place value, decimal measures	Step 7 - I know how to express hundredths as a fraction	Decimals -A			Round the Dice Decimals 1 * I

arise when dividing an object by 100 and dividing tenths by 10	and to division by 10 .					
- Recognise and write decimal equivalents of any number of tenths or hundredths - Compare numbers with the same number of decimal places up to 2 decimal places	Knows how to connect tenths to place value, decimal measures and to division by 10 .	Step 8 - I know how to express hundredths as a decimal Step 9 - I know how to express hundredths on a place value chart	Decimals - A			Round the Dice Decimals 1* I
- Recognise and write decimal equivalents of any number of tenths or hundredths	Knows how to connect tenths to place value, decimal measures and to division by 10 .	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Decimals B Steps I-4 LOI know to make a whole with tenths LO I know to I know to make a whole with hundredths	Decimals B	tenths hundredths decimal point 0.1 and 0.01 equivalent whole number rounding greater than (>) less than (<) equal to (=) order	Place value charts Place value counters Base ten equipment	Round the Dice Decimals 1* I

25 | Page

		Lo I know to partition decimals Lol know to partition decimals in different ways		compare convert decimal place ascending descending	
- Compare numbers with the same number of decimal places up to 2 decimal places	Knows the relative position of numbers.	Step 5-6 LO I know to compare decimal numbers Lo 1 know to order decimal numbers	Decimals B		
- Round decimals with I decimal place to the nearest whole number	Knows the rules of rounding.	Step 7 LO I Know to round decimals to the nearest whole number	Decimals B		
- Recognise and write decimal equivalents of any number of tenths or hundredths - Recognise and write decimal equivalents to 14,12 and 3 4	Knows that fractions are relative to the whole and can be represented in different ways.	Step 8 LO I know to express halves and quarters as decimals	Decimals B	equivalent fraction decimal numerator denominator	

26 | Page

- Recognise angles as a property of shape or a description of a turn (Y3)	Knows acute and obtuse in relation to right angles. Knows how to describe position and movement using right angles for quarter turns (Y2)	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Step I - I know how angles can be represented as turns.	Geometry shape			Fraction Match (maths.org) Fraction Lengths (maths.org)
- Identify acute and obtuse angles and compare and order angles up to two right angles by size	Knows acute and obtuse in relation to right angles.	Step 2 - I know how to identify different angles Step 3 - I know to compare and order angles	Ceometry angles			
- Compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes	Knows how to describe and classify shapes using mathematical properties	Step 4 - I know how to describe and classify triangles Step 51 know how to describe and classify quadrilaterals Step 6 - LO I know how to describe and classify polygons	Geometry polygons	quadrilateral triangle regular irregular interior angle angle acute obtuse reflect right angle symmetrical issosceles scalene equilateral	Squared paper Regular and irregular shapes	Fraction Match (maths.org) Fractional Triangles (maths.org) Fraction Lengths (maths.org)

				line of symmetry reflective symmetry		
- Identify lines of symmetry in 2D shapes presented in different orientations	Know and recognise right angles in $2 d$ shapes.	Step 7 LO I know identifying lines of symmetry on 2D shapes	Geometry symmetry		Mirrors Tracing paper	Reflector! Rotcelfer *** School Fair Necklaces ${ }^{* *}$ I
- Complete a simple symmetric figure with respect to a specific line of symmetry	Know and recognise right angles in $2 d$ shapes.	Step 8 LO I know to complete a symmetrical figure	Geometry: symmetry			$\begin{aligned} & \text { Symmetry }_{\text {Challenge }}{ }^{* * *} \end{aligned}$
- Describe positions on a 2-D grid as coordinates in the first quadrant		Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Steps 1 to 2 LO I know to describe positions using co-ordinates LO I know to plot coordinates on a grid	Geometry : Position and direction / coordinates	position horizontal vertical up down left right coordinates square rectangle	Squared paper Compass	Coordinate Challenge * Eight Hidden Squares **

$\left.\begin{array}{|l|l|l|l|l|l|}\hline & & & \begin{array}{l}\text { plot } \\ \text { vertex } \\ \text { vertices } \\ \text { point }\end{array} \\ \text { grid }\end{array}\right]$

- Solve
comparison, sum and
difference problems using
information
presented in bar charts,
pictograms,
tables and other graphs

LO I know to make comparisons and find the sum and difference using charts

LO I know how to interpret line graphs

LO : I know to draw line graphs

