Maths planning document

Teagues Bridge Primary school

$$
2023 \text { - Year } 5
$$

Written on:	$30^{\text {th }}$ March 2020
Reviewed on:	March 2023
Next review:	March 2024
Staff Responsibility	Mr M Hale
Governor responsibility	Drew White

This document supported by the CLIC maths program providing teaching and consolidation of mental strategies for mathematics and the white rose small steps for teaching sequences. Weeks are a guideline and should be adapted for the needs of the children. Time for consolidation is designed for recapping of previous units to ensure learning in committed to the long-term memory. This can also be used to teach areas of misconceptions.

Mathematics \ln tent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.
Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/ problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

Year 5 - Yearly Overview

	$\begin{aligned} & \overline{\mathrm{j}} \\ & 3 \\ & 3 \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{N}{8} \\ & 3 \end{aligned}$	$\begin{aligned} & m \\ & \text { m } \\ & \text { sin } \end{aligned}$	$\begin{aligned} & \pm \\ & \frac{ \pm}{8} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { L } \\ & \stackrel{y}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{y}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{N} \\ & \stackrel{\rightharpoonup}{8} \\ & 3 \end{aligned}$		$\begin{aligned} & \sigma \\ & \stackrel{y}{3} \\ & 3 \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { B } \end{aligned}$	$\begin{aligned} & = \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { S゙ } \\ & \$ \end{aligned}$	¢	+
¢	Num Coun wri pa	d place reading. and ing	Addition and subtraction Whole numbers $4+$ digits and inverse		Multiplication and division multiples, factors, primes, square and cubed Multiplying and dividing by 10,100 and 1000			Fractions :converting, adding and subtracting			Multiplication: short and long multiplication		Measurement: Perimeter and area	
$\begin{gathered} \frac{9}{3} \\ \frac{5}{6} \end{gathered}$	Num compa an	d place ordering ding	$\begin{array}{r} \mathrm{Ad} \\ \text { su } \\ \text { Multi- } \\ \text { miss } \end{array}$	and ction poblems/ umbers	Fracti subtr	ng and mixed	Number negative numbers	Multi multip and	- long (revisit) vision	Fractio and	multiplying ctions of unts	Decimal hundre thous	tenths, s and dths	
$\begin{aligned} & \text { s } \\ & \\ & \text { n } \end{aligned}$		ds of on 1 inverse)	Geom	: angles	Decim Multip and 100	dition and dividing	subtraction by 10,100		units	Grome and	Position rection	Sta		Measure ment Volume

Year 5: Autumn term

National curriculum objectives	Prior knowledge from year 4	Learning outcomes (including WR steps)	Mathematical aspect	Vocabulary	Manipulatives	Problem solving resources
Lessons cover both objectives together - Count forwards or backwards in steps of powers of 10 for any given number up to I,000,000 - To read, write, numbers at least to 1,000,000 and determine the value of each digit.	Knows the properties of place value for four-digit numbers.	Maths resources for teachers \| White Rose Maths Steps $2-9$ LO: I know the place value of numbers upto 10,000 LO I know the place value of numbers upto 100,000 Lo: I know the place value of numbers to I,000,000 Lol know to read and write numbers to 1,000,000 Lo 1 know powers of 10 . Lo I know finding more or less of 10/100/1,000/10,000 and 100,000	Place Value	ones (Is) tens (IOs) hundreds (IOOs) thousands (1,000s) ten thousands ($10,000 \mathrm{~s}$) place value partition estimate round compare order equivalent greater than (>) less than (<)	Place value charts $\|1\| 1\|\mid: 1$ \qquad Place value counters (1) 10 100) 1000 Base ten equipment	Counting forwards and backward Space Distances *

		Lo I know partitioning numbers to $1,000,000$ Lo I know locating numbers to $1,000,000$ on a number line.				
- Read Roman numerals to I,OOO (M) and recognise years written in Roman numerals		Step I Lo 1 know to read roman numerals to 1,000	Place value: Roman Numerals	roman numerals $\begin{aligned} & x-10 \\ & v=5 \\ & I=1 \\ & C=100 \\ & D=500 \\ & M=1000 \end{aligned}$		Roman numerals Roman Numerals *
- Add and subtract numbers mentally with increasingly large numbers	Knows efficient methods for addition and subtraction up to and including fourdigit numbers.	Maths resources for teachers \| White Rose Maths Step 1 Lo \mid know mental strategies to add and subtract	Addition and Subtraction: mental calculation methods	add subtract ones (Is) tens (IOs) hundreds (IOOs) thousands (I,000s) ten thousands (IO,000s) mentally inverse round estimate		$\begin{aligned} & \text { Maze } 100 \text { ** } \\ & \text { Reach } 100 ~ * * * ~_{l}{ }^{*} \end{aligned}$

- Add and subtract whole numbers with more than four digits, including using formal written methods (columnar addition and subtraction)	Knows the efficient written algorithms for addition and subtraction with increasing fluency for large numbers.	Maths resources for teachers \| White Rose Maths Steps 2-5 Lo 1 know to add whole numbers with more than 4 digits. Lo I know to subtract whole numbers more than 4 digits Lol know to check answers using rounding Lo I know using the inverse operation.	Addition and Subtraction calculation methods	add subtract ones (Is) tens (IOs) hundreds ($\mathrm{IOOs}_{\mathrm{s}}$) thousands (1,000s) ten thousands (IO,000s) inverse round estimate	Place value charts Place value counters (I) 10 (100) 1,000 Base ten equipment Numicon	Twenty Divided Into Six ** Six Ten Total ${ }^{* *}$ I Six Numbered Cubes $^{* *}$ Subtraction $\underline{\text { Surprise }}{ }^{*}$
- Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers	Knows how to find factor pairs.	Maths resources for teachers / White Rose Maths Steps I-4 Lo: I know multiples Lo : I know how to find common multiples	Multiplication and division	prime number composite number square number cube number square (2) cube (3) inverse operation multiply divide		Which Is Quicker? * Multiplication Squares * I Factors and Multiples Game * G

7 | P a g e

		Lo: I know factors Lo: I know common factors Lo I know how to calculate square numbers Lo: I know how to calculate cube numbers		multiple factor prime factor		
- Know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers - Establish whether a number up to 100 is prime and recall prime numbers up to 19		Maths resources for teachers \| White Rose Maths Steps 5 Lo: I know what prime numbers are. Lol know to identify prime numbers to IOO .	Prime numbers			Abundant Numbers
- Recognise and use square numbers and cube numbers,	Knows how to solve integer scaling problems and harder correspondence problems.	Maths resources for teachers \| White Rose Maths Steps 6 and 7	multiplication and division Square and cubed numbers	square number cube number square (2) cube (3)		Sweets in a Box * I

8 | Page

and the notation for squared (2) and cubed (3)		Lo l know how to calculate square numbers Lo: I know how to calculate cube numbers				
- Multiply and divide whole numbers and those involving decimals by 10 , 100 and I,000	Knows and applies table facts for recall of multiplication and division facts when calculating.	Steps 8 to 10 Lo I know to multiply by 10,100 and 1000 Lo I know to divide by 10,100 and 1000 Lo I know to calculate multiples of 10,100 and IOOO.	Multiplication and division 10,100 and 1000	inverse operation multiply divide multiple factor		
- Identify, name and write equivalent fractions of a given fraction, represented visually, including tenths and hundredths		Steps I to 3 LO I know to find fractions equivalent to a non-unit fraction Lol know to find fractions equivalent to a unit fraction LO I know to recognise equivalent fractions	Fractions: Converting, adding and subtracting	equivalent numerator denominator whole fraction simplify expand division improper mixed number	Fraction tiles Cuisenaire rods	Tumbling Down Balance of Halves

9 | Page

					Fractions circles Numicon	
- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > I as a mixed number	Knows how to add and subtract fractions with the same denominator.	Steps 4-5 Lol know to convert improper fractions to mixed numbers Lol know to convert mixed numbers to improper fractions	Fractions: improper and mixed numbers	equivalent numerator denominator whole fraction simplify expand division improper mixed number	Fraction tiles Cuisenaire rods Fractions circles Numicon	A4 Fraction Addition * A4 Fraction Subtraction * Linked Chains

- Multiply numbers up to four digits by a 1 - or 2digit number using a formal written method, including long multiplication for 2-digit numbers	To multiply 3×1 digit numbers and recall all multiplication facts with speed and accuracy.	Steps I -6 Lol know how to multiply a 4 digit number by a 1 digit number Lol know how to multiply a 2 digit number by a 2 digit number Lol know how to multiply a 3 digit number by a 2 digit number Lol know how to multiply a 4 by 2 digit number Lo I know how to apply my methods to solve problems	Multiplication short and long multiplication	inverse operation multiply divide multiple factor	Place value counters (1) 10 100 (1000) Base ten equipment	All the Digits ** Trebling *
- Measure and calculate the perimeter of composite rectilinear shapes	Calculating perimeters by counting the length of sides	Steps I- 6 Lo To know how to find the perimeter of rectangles	Area and perimeter	Length, Side, Perimeter Area, Rectangle, rectilinear, Area	Ruler	Shaping It * I Brush Loads * I Cubes * I

11 | Page

Year 5 Spring term

National curriculum objectives	Prior knowledge from year 4	Learning outcomes (including WR steps)	Mathematical aspect	Vocabulary	Manipulatives		Problem solving resources					
Read, write, order and compare numbers to at least 1,000,000 and determine the value of each digit	Knows the properties of place value for four-digit numbers. Knows the rules of rounding.	Y5-autumn-block-1-sol-place-value.pdf (whiterosemaths.com) Step 10-11 LoI know to order and compare numbers to 100,000 Lo I know to order and compare numbers to 1,000,000	Place value: ordering	ones (Is) tens (IOs) hundreds (IOOs) thousands (1,000s) ten thousands (IO,000s) place value partition estimate round compare order equivalent greater than (>) less than (<) convert	Place value char \|					 Place value coun (1) 10 100) 1,000 Base ten equipmen	ts 1 \% ters nt	Space Distances *
Round any number up to $1,000,000$ to the nearest 10,100 ,	Knows the rules of rounding.	Lol know to round to the nearest IO	Place Value : rounding	ones (Is) tens (IOs) hundreds (IOOs) thousands (1,000s)	Place value char 1 II 11	ts 1 \%	Space Distances *					

$\begin{gathered} 1,000,10,000 \text { and } \\ 100,000 \end{gathered}$		Lo I know to round to the nearest 100 Lo I know to round to the nearest 1000 Lo I know to round to the nearest 10,100 and 1000 Lol know to round within 100,000 Lo I know to round within 1,000,000		ten thousands (IO,000s) place value partition estimate round compare order equivalent greater than (>) less than (<) convert	Place value counters Base ten equipment	
- Solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why	Knows how to check the accuracy of addition and subtraction calculations.	Maths resources for teachers \| White Rose Maths Steps 6 - 8 Lo l know how to solve multi-step addition and subtraction problems Lo I know to complete calculations using the inverse		add subtract ones (Is) tens (IOs) hundreds (IOOs) thousands (I,OOOs) ten thousands (IO,000s) inverse round estimate	Place value charts Place value counters Base ten equipment	Twenty Divided Into Six ** Maze 100 ** $\underline{\text { Six Ten Total ** I }}$ Six Numbered Cubes ** Reach 100 *** Subtraction Surprise *

14 | Page

		LO - I know how to find missing numbers				
- Recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number	Knows how to add and subtract fractions with the same denominator.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Fractions A Steps 12 - 17 LO I know to add to a mixed number LO I know to add two mixed numbers together LO I know to subtract fractions LO I know to subtract from a mixed number	Fractions: Calculating with mixed numbers	equivalent numerator denominator whole fraction simplify expand division improper mixed number convert sequence order greater than (>) less than (<) equal to (=)	Fraction tiles Cuisenaire rods Fractions circles Numicon	

15 | Page

		LO I know to subtract from a mixed number (Partitioning the whole) LO I know to subtract two mixed numbers.				
- Interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero	Knows the number system from zero into negative numbers.	Maths resources for teachers \| White Rose Maths (whiteroseeducation.com) Steps I - 4 LO I know how negative numbers work LO \| know to count through zero in I's LO I know to count through zero in multiples LO I know to compare and order negative numbers	Number: Negative numbers	place value partition estimate round compare order equivalent greater than ($>$) less than (<) negative numbers less than zero zero	Place value charts \qquad Place value counters (1) 10 100 (1,000) Base ten equipment	Tug Harder! * G Swimming Pool* Sea Level * I

Year 5 Summer term

\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|}\hline \begin{array}{c}\text { National } \\
\text { curriculum } \\
\text { objectives }\end{array} & \begin{array}{l}\text { Prior knowledge } \\
\text { from year 1 }\end{array} & \begin{array}{l}\text { Learring outcomes } \\
\text { lincluding WR steps) }\end{array} & \begin{array}{l}\text { Mathematical } \\
\text { aspect }\end{array} & \text { Vocabulary } & \text { Manipulatives }\end{array}
$$ \begin{array}{l}Problem solving

resources\end{array}\right] |\)| | | | | |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |
| | | | | |

