

Mathematics Intent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, con jecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency. mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

EYFS and Key Stage one - Patterns and rules

Patterns \& Rules EYFS (conditional)	KSI (conditional)
I know how to spot the I know what comes next. pattern/rule and describe it I know how to make a mathematically. repeating pattern. I know how to design a process or arithmetic strategy using the rules.	I know what a repeating pattern is. I know how to find the step size, following a rule. I know how to describe patterns mathematically using signs and symbols. I know how to use the inverse.
Key Skills and Strategy Development EYFS	Question stems
Spot the pattern/rule and describe it using colours or shapes for example.	Is this a repeating pattern? Is this a step size, following a rule? Can you describe it?
Follow a rule, such as adding one more each time.	What arithmetic knowledge will you use?
Example problems	Model answers
\square 2 \square	Conditional Knowledge Early years Use combinations of number facts, shape facts, pattern facts, methods of counting, addition and subtraction to \Rightarrow play games \Rightarrow sing songs \Rightarrow answer questions \Rightarrow talk about everyday objects \Rightarrow solve problems using objects within continuous provision

Keystage 1 ~ Patterns and Rules

5 Kim is counting in 2 s . She starts counting at 32 32 ... Circle the numbers that Kim will say $\begin{array}{lll} 45 & 36 & 44 \end{array}$	Y2 - count in steps of 2, 3, and 5 from 0 , and in tens from any number, forward and backward
Here is part of a number pattern The numbers increase by five each time 2 7 12 17 22 \square	YI - count, read and write numbers to 100 in numerals, count in multiples of twos, fives and tens.
I think of a number and add 3 . The answer is 15 . What is my \square 12 \longleftarrow -3 \rightleftharpoons 15 number?	Y2- recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems.
$\begin{aligned} 7+3 & =10 \\ 17+3 & =20 \end{aligned}$ \square $+3=30$ \square $+3=$ \square $47+3=50$	Y2 - numbers to develop further their recognition of patterns within the number system

Lower Key Stage 2 - Patterns and rules

Patterns \& Rules	EYFS (conditional)	KSI	LKS2
I know how to spot the pattern/rule and describe it mathematically. I know how to design a process or arithmetic strategy using the rules.	I know what comes next. I know how to make a repeating pattern.	1 know what a repeating pattern is. 1 know how to find the step size, following a rule. 1 know how to describe patterns mathematically using signs and symbols.	1 know what a repeating pnttern is. 1 know how to follow a rule. 1 know when the pattern increases or decreases. 1 know how to apply inverse relationships. 1 know how to describe rules mathematically using signs and symbols.

Key Skills and Strategy Development LKS2	Question stems
Spot the pattern/rule and describe it mathematically.	Is this a repeating pattern? Is this a step size, following a rule? Is it increasing or decreasing? Can you describe it mathematically?
Design a process or arithmetic strategy using the rules	What arithmetic knowledge will you use? What inverse relationships will you use?
Prove mathematically	What will the proof look like? Are there other examples that satisfy the rule?

Declarative knowledge	Procedural knowledge
Lower Key Stage 2 Concepts, representations, and associated	Lower Key Stage 2 Efficient and
vocabulary: \Rightarrow Arithmetic: enhanced knowledge of the code	accurate methods: \Rightarrow counting up and
for number (to IOOOs) including patterns and associated rules	down in multiples of 3, 4, 6, 7, 8, 9,
for addition and subtraction of numbers, decimal numbers,	$I I, 12,25,50,100,1000$, in tenths, in
place value, negative numbers, associative and distributive laws	ones through to negative numbers \Rightarrow
\Rightarrow Maths facts: all multiplication facts for the 3, 4, 6,7,	Column addition and subtraction \Rightarrow
$8,9, I I, I 2$ multiplication tables, decimal equivalents of key	Mental addition and subtraction using patterns and rules of number \Rightarrow Short division and multiplication \Rightarrow Mental multiplication using derived $f a c t$
fractions \Rightarrow equivalent fractions.	

Upper Key Stage 2 - Patterns and rules

Patterns \& Rules	EYFS (conditional)	KSI	LKS2	UKS2
I know how to spot the pattern/rule and describe it mathematically. I know how to design a process or arithmetic strategy using the rules.	I know what comes next. I know how to make a repeating pattern.	I know what a repeating pattern is I know how to find the step size, following a rule. I know how to describe patterns mathematically using signs and symbols.	I know what a repeating pattern is. I know how to follow a rule. I know when the pattern increases or decreases. I know how to apply inverse relationships. I know how to describe rules mathematically using signs and symbols.	I know what a repeating pattern is and can predict sequences. I know how to apply a rule including more than one step. I know when the rule increases or decreases or is incremental. I know how to apply inverse relationships and reverse strategies. I know how to describe rules mathematically using signs and symbols including expressions

Key Skills and Strategy Development LKS2	Question stems
Spot the pattern/rule and describe it mathematically.	What is the rule in the sequence? Is it increasing or decreasing in regular step sizes? Can you describe it mathematically?
Design a process or arithmetic strategy using the rules	What arithmetic knowledge will you use? What inverse relationships will you use?
Prove mathematically	What will the proof look like? Are there other examples that satisfy the rule? Is there an expression for the rule? The nth term?

Declarative knowledge	Procedural knowledge
Upper Key Stage 2 Concepts, representations, and associated vocabulary:	Upper Key Stage 2 Efficient and accurate methods \Rightarrow Scaling, \Rightarrow Enhanced knowledge of the code for number: up to and within 1 coordinate geometry in all four 000 000, multiples, factors, decimals, prime number facts to 100,
composite numbers, indexation	quadrants \Rightarrow Division with remainders as fractions, decimals and where
Conversion facts metric to imperial measurements and vice versa \Rightarrow Key	
circle, quadrilateral and triangle facts and formulae (e.g. angles on a	
straight line sum to 180 degrees) Rules and principles governing order of of	
rounding is needed \Rightarrow Fractions:	
conversion mixed to improper and vice	
versa, add, subtract and multiply \Rightarrow	
	Finding percentages of amounts $\Rightarrow \Rightarrow$

operations for square and cubed numbers \Rightarrow Properties of linear sequences Rules and principles governing order of operations.	Use of order of operations \Rightarrow Convert between fractions, decimals and percentages. Linear algebra.
Example problems	Model answers
7 Here is a number sequence. $\begin{array}{lll} 75 & 50 & 25 \end{array}$ \square \square	Y5 - count forwards or backwards in steps of powers of 10 for any given number up to 1000000
Write the next two numbers in this sequence. $\begin{array}{lll} 1,780 & 1,880 & 1,980 \end{array}$ \square \square $\overline{1 \text { makk }}$	Y5 - count forwards or backwards in steps of powers of 10 for any given number up to 1000000
21 The numbers in this sequence increase by the same amount each time. Write the missing numbers. 1 $1 \frac{5}{8}$ $2 \frac{1}{4}$ \square	Y6 - compare and order fractions, including fractions >1.
23 Here is a pattern of number pairs. Complete the rule for the number pattern. $b=\square \times a-\square \quad \frac{}{1 \text { mark }}$	Y6-use simple formulae.
	Y6 - find pairs of numbers that satisfy an equation with two unknowns

20 The length of this rectangle is 6 cm . The width is $w \mathrm{~cm}$. Circle all the methods below that can be used to work out the perimeter of the rectangle. $w \times 6$ $w \times 2+12$	
Each shape stands for a number. The total of the shapes on the diagonal line is 48 The total of all the shapes is 200 Calculate the value of each shape $\Delta=$ \square $\overline{1 \text { mark }}$ O $=$ \square	Y5 - solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why Y6-express missing number problems algebraically

