

Mathematics Intent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, con jecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency. mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

Logic	EYFS (conditional)	KSI (conditional)
I know how to identify the starting point by generalising or classifying. I know to check solutions to match the criteria.	I know how and when to find a starting point. I know what I should do next.	I know where the starting point is. I know that I must find the best clue. I know what is true and when I can be certain.

Example problems	Declarative and procedural knowledgeEarly years: numbers and number bonds to IO; concepts and vocabulary for talking about maths and mathematical patterns (size, weight, capacity, quantity, position, distance, time) Early years: accurate counting, single digit addition and subtraction, halving doubling and sharing.

Keystage 1 - Logic

Key Skill and Strategy Development KSI	Question stems
Identify the starting point by generalising or classifying.	Where is your starting point? Which is the best clue? What do you know is true?
Check solutions match the criteria.	Have I answered the question?

Declarative knowledge	Procedural knowledge
Key Stage I Concepts, representations and associated vocabulary: \Rightarrow simple fractions \Rightarrow basic arithmetic: the numbering system and its symbols, place value, conventions for expressions and equations, counting, addition, subtraction, equal sharing, doubling, balancing simple arithmetic equations, classifying numbers (odd, even, teens), inverse operations, estimation, numerical patterns \Rightarrow basic measurement: length; capacity; time; position; relative size, position, direction, motion, quantity \Rightarrow Currency and coinage \Rightarrow Basic geometry: 2D and 3D shapes, geometric pattern	Key Stage I Efficient and accurate methods: \Rightarrow counting up and down in 1 s , $2,5 \mathrm{~s}, \mathrm{IO}$ and $1 / 2 \mathrm{~s}$; addition; subtraction, equal sharing, division and multiplication \Rightarrow reading, writing of the digits/symbols, vocabulary and phrases required for working with simple fractions, arithmetic expressions and equations \Rightarrow measuring length, capacity, time and monetary value
Example problems	Model answers
25 Look at the two calculations. Each Write the answer to the second calculation. $\begin{aligned} & \hat{\omega}+\hat{\hbar}=20 \\ & \hat{\omega} \times \hat{\imath}=\square \end{aligned}$	Y2 -recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
123456789 Use the clues to write the digits 1 to 9 in the grid. A: This digit is odd. B: This digit is less than 2. C: This digit is half of 12 . D : This digit is 1 more than E. E : This digit is equal to $3+4$. F : This digit is 2 more than B . G: This digit is between 1 and 3 H : This digit is even. I: This is the largest digit.	A 5 B $\boxed{1}$ C 6 \mathbf{D} 8 E $\boxed{7}$ F \mathbf{B} $\boxed{3}$ \mathbf{G} 2 H $\boxed{4}$ \mathbf{I} YI- read, write and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs \%

	represent and use number bonds and related subtraction facts within 20 Y2 - recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100
Use four different number cards to complete the number sentences below. 5 15 25 35 45 55	Y2 - add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a a two-digit number and ones
5	Y2 -recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.
11 Junaid has sorted some numbers in the table below. The numbers must be greater than 10 but less than 50 Circle the number that is in the wrong place in the table. Put one more number in each group in the table.	YI - They practise counting as reciting numbers and counting as enumerating objects, and counting in twos, fives and tens from different multiples to develop their recognition of patterns in the number system (for example, odd and even numbers), including varied and frequent practice through increasingly complex questions.

Number lines 1. Make each line add up to 16 , 2. Make each line add up to 20 . 3. Make up your own puzzle like this. Ask a friend to do it.	YI - read, write and interpret mathematical statements involving addition $(+)$, subtraction (-) and equals $(=)$ signs - represent and use number bonds and related subtraction facts within 20
30 Write a digit in each box to complete this number sentence.	Y2 -show that addition of two numbers can be done in any order (commutative) and subtraction of one number from another cannot. recognise and use the inverse relationship between addition and subtraction and use this to check calculations and solve missing number problems
Digit cards game You need digit cards 0 to 5 \square Use four of the cards. $1 \begin{array}{lll}1 & 5\end{array}$ Complete the number sentence.	Y2 -recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers.

Logic	EYFS (conditional)	KSI (conditional)	LKS2 (conditional)
I know how to identify the starting point by generalising or classifying. I know to check solutions to match the criteria.	I know how and when to find a starting point. I know what I should do next.	I know where the starting point is. I know that I must find the best clue. I know what is true and when I can be certain. starting point is. I know how to find the best clue. I know when I can place information with certainty.	
I know when my			
deduction accurate.			
I know how to present			
the solution.			

Key Skill and Strategy Development LKS2	Question stems
Identify the starting point by generalising or classifying.	Where is your starting point? Which is the best clue? What can you place with certainty? Is your deduction accurate?
Check solutions match the criteria.	Have I answered the entire question?
Declarative knowledge	Procedural knowledge
Lower Key Stage 2 Concepts, representations and associated vocabulary: \Rightarrow Arithmetic: enhanced knowledge of the code for number (to IOOOs) including patterns and associated rules for addition and subtraction of numbers, decimal numbers, place value, negative numbers, associative and distributive laws \Rightarrow Maths facts: all multiplication facts for the 3, 4, 6, 7, 8, 9, II, 12 multiplication tables, decimal equivalents of key fractions. Geometry facts: right angles, acute and obtuse angles, right angles in whole and half turns, symmetry, triangle, and quadrilateral classifications; horizontal, perpendicular. parallel and per	Lower Key Stage 2 Efficient and accurate methods: \Rightarrow counting up and down in multiples of $3,4,6,7,8,9,11,12,25$, $50,100,1000$, in tenths, in ones through to negative numbers \Rightarrow Column addition and subtraction \Rightarrow Mental addition and subtraction using patterns and rules of number \Rightarrow Short division and multiplication \Rightarrow Mental multiplication using derived facts. Draw 2D and 3D shapes.
Example problems	Model answers

Use different whole numbers to complete the diagram.	Y3 - recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables. Y_{4}-use place value, known and derived
Shape puzzle Each shape stands for a number. The numbers shown are the totals of the numbers in the row or column.	Y4 - solve addition and subtraction deciding which operations and methods to use and why

Here are six number cards. They are all factors of the same number. 3 8 Use the cards to complete 3 factor pairs. Write one more factor pair for tris number.	Y3 - recall and use multiplication and division facts for the 3,4 and 8 multiplication tables. Y_{4}-use place value, known and derived facts to multiply and divide mentally
Numbers of boys and girls Use these clues to find the number of boys and girls in each class. There are a total of 114 children in the school. There are 14 girls in Class 2. Class 4 has twice as many girls as class 2. No class has the same number of children. There are 52 boys in the school in total. In class 1 there are half as many boys as in class 2. In class 2 there are a total of $\mathbf{3 0}$ children. In class 3 there are an equal number of girls and boys. In class 4 there are 10 boys. There are a different number of boys and girls in the school.	Numbers of boys and girls Y_{4-} estimate and use inverse operations to check answers to a calculation
Use four different whole numbers to complete the sentences. $\begin{aligned} & \square \times \square=24 \\ & \square \times \square=24 \end{aligned}$	Y3 - recall and use multiplication and division facts for the 3,4 and 8 multiplication tables.

Ryan thinks of a 4digit whole number where every digit is different. Use the clues to work out Ryan's number. The third digit is not 8.	All digits are even. Ryan's number is a multiple of 5 .	Ryan's number is smaller than 4500. Ryan's number is between 4000 and 5000.	Y_{4-} order and compare numbers beyond 1000. Look for all or every first.
Megan thinks of a sequence of four 2 -digit numbers. Use the clues to work out the numbers in the sequence. The last number in the sequence is less than 50 .	The first number in the sequence is an odd number. The sequence goes up in regular steps.	All of the numbers are multiples of 5 . 9 is a factor of the last number in the sequence.	Y3-Y3 - recall and use multiplication and division facts for $5 \times$ multiplication tables.

Upper Key Stage 2 - Logic

Logic	EYFS (conditional)	KSI	LKS2	UKS2
I know how to identify the starting point by generalising or classifying. I know to check solutions to match the criteria.	I know how and when to find a starting point. I know what I should do next.	I know where the starting point is. I know that I must find the best clue. I know what is true and when I can be certain.	I know where the starting point is. I know how to find the best clue. I know when I can place information with certainty. I know when my deduction accurate. I know how to present the solution.	I know where the most useful information is. I know how to find the generalisations and rules. I know that some information can be eliminated. I know the best way present the solution. I know when I have answered the question fully.

Key Skill and Strategy Development LKS2	Question stems
Identify the starting point by generalising or classifying. Manage positive and negative information.	Where is the most useful information? What are the generalisations and rules? What can you place with certainty? Can you eliminate information?
Check solutions match the criteria.	How shall I present the solution? In a table? Have I answered the entire question?
Declarative knowledge	Procedural knowledge
Upper Key Stage 2 Concepts, representations, and associated vocabulary: \Rightarrow Enhanced knowledge of the code for number: up to and within I OOO OOO, multiples, factors, decimals, prime number facts to IOO, composite numbers, indexation for square and cubed numbers Rules and principles governing order of operations.	Upper Key Stage 2 Efficient and accurate methods \Rightarrow Scaling, coordinate geometry in all four quadrants \Rightarrow Division with remainders as fractions, decimals and where rounding is needed \Rightarrow Fractions: conversion mixed to improper and vice versa, add, subtract and multiply \Rightarrow Finding percentages of amounts \Rightarrow Convert between fractions, decimals and percentages Linear algebra, basic trigonometry.
Model answers	

