Problem solving guidance
Finding all possibilities EYFS KSI

Lower KS2
Upper KS2
Autumn 1

Mathematics Intent

At Teagues Bridge, our intention is ambitious. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can aspire to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the opportunity and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to empower them to want to ask questions and want to find the answers.
Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, con jecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency. mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.
Our lessons are structured to enable all children to achieve and have an opportunity to make progress with their learning. Each lesson begins with a CLIC maths activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then develop their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a reasoning/problem solving activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then challenge themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

EYFS and Key Stage one - Finding all possibilities

Keystage 1 ~ Finding all possibilities

Key Skills and Strategy Development KSI	Question stems
Work systematically.	How will I put my answers in order? What resources shall we use?
Check for repeats.	Are some of my answers the same?
Satisfy the criteria with solution/s.	Have I answered the question? Solved the problem?
Declarative knowledge	Procedural knowledge
Concepts, representations, and associated vocabulary: \Rightarrow simple fractions \Rightarrow basic arithmetic: the numbering system and its symbols, place value, conventions for expressions and equations, counting, addition, subtraction, equal sharing, doubling, balancing simple arithmetic equations, classifying numbers lodd, even, teens), inverse operations, estimation, numerical patterns.	Efficient and accurate methods: \Rightarrow counting up and down in Is, 2, 5s, IOs and I/2s; addition; subtraction, equal sharing, division and multiplication \Rightarrow reading, writing of the digits/symbols, vocabulary and phrases required for working with simple fractions, arithmetic
expressions and equations, numerical patterns \Rightarrow	
construction and interpretation of categorical	
data:, charts, tables	

There are 15 sweets altogether and 3 bags. There are 7 sweets in one bag. How many sweets could be in the other 2 bags? Can you find some of the different ways they could be shared between the bags?	7 $?$ $?$ 1 7 2 6 3 5 4 4 Y2 - number bonds to 20 and within, recall and use addition and subtraction facts to 20 fluently. and derive and use related facts up to 100
Whitney has this many cubes in one hand. She has fewer cubes in the other hand. How many cubes could she have in her other hand?	YI - less than 5, represent and use number bonds and related subtraction facts within 20
There are 2 ice-creams and up to 16 marshmallows. How many ways can you share marshmallows between the 2 ice-creams so that the 2nd ice-cream has double the amount of marshmallows as the 1st ice-cream?	Y2 - doubles and halves to 20 , recall and use addition and subtraction facts to 20 fluently. and derive and use related facts up to 100
	YI - number bonds to IO and within, represent and use number bonds and related subtraction facts within 2

Stanley found the following number bonds to 8 What order would Stanley have found them in if he'd have worked systematically?	
Match all the pairs of numbers that add to $\mathbf{2 0}$ One is done for you	YI/2 - number bonds to 20, represent and use number bonds and related subtraction facts within 2 recall and use addition and subbraction facts to 20 fluently, and derive and use related facts up to 100
31 Sita solved this calculation $16-4=12$ Circle all of the calculations that show how Sita could check her answer. $\begin{array}{ll} 16+4 & 4+12 \\ 4+16 & 12+4 \end{array}$	YI/2 Number bonds to 2 and within, represent and use number bonds and related subtraction facts within 2 Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up to 100.

Lower Key Stage 2 - Finding all possibilities

Finding All Possibilities	EYFS (conditional)	KSI (conditional)	LKS2
(conditional)			

Amy started with a 3 digit number.
 The number was > 200 but < 239, it was a multiple of 4 but not a multiple of 8 .
 Find all the possible numbers.

204, 212, 220, 228, 236

Y_{4} - common multiples of 4 and 8 , recall multiplication and division facts for multiplication tables up to $I 2 \times I 2$, use place value, known and derived facts to multiply and divide mentally.

Upper Key Stage 2 - Finding all possibilities

Finding All Possibilities	EYFS (conditional)	KSI	LKS2	UKS2
I know how to work systematically. I know how to check for repeats. I know how to satisfy the criteria with solution/s.	I know when to put items and objects, including pictures in order. I know when items are the same.	I know when I will put my answers in order. I know what resources to use. I know if I have some answers the same.	I know the best way to record the results. I know if some solutions repeated. I know if I have solved the problem and when there is more than one solution.	I know when to identify are the starting and stopping points. I know when some solutions are repeated and when it affects the outcome.
I know when the				
criteria restrict the				
number of				
possibilities.				

