

Calculation Policy Year I and Year 2

Maths Calculation Policy Year I and Year 2

The following pages show our school's progression in calculation (addition, subtraction, multiplication and division) and how this works in line with the National Curriculum. The consistent use of the concrete, pictorial and abstract approach throughout our school helps children develop mastery across all the operations in an efficient and reliable way. This policy shows how these methods develop children's confidence in their understanding of both written and mental methods.

Mathematics Intent

At Teagues Bridge, our intention is **ambitious**. We aim to create strong mathematicians who have the necessary skills and understanding to tackle mathematical challenges in varying contexts, including the ability to reason and apply their knowledge to solving problems. This should mean that children are able to apply their knowledge to everyday life and can **aspire** to achieve anything that they want. We want our pupils to have strong mental manipulation and to use written strategies when appropriate.

Our philosophy for mathematics is replacing an idea that maths is lots of rules and numbers with a study of patterns and connected ideas. In early years they will build a foundation of number understanding and representation through mainly concrete and pictorial representations. The approach will be supported by in depth questioning, throughout the school to develop mastery.

Use of CPA is encouraged to ensure the curriculum is accessible for all children and that they all have the **opportunity** and are able to demonstrate their understanding in a variety of ways. This will enable them to have a good understanding of maths and not just the ability to follow a procedure. We want to **empower** them to want to ask questions and want to find the answers.

Aims: The national curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and nonroutine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

Mathematics is an interconnected subject in which pupils need to be able to move fluently between representations of mathematical ideas. The programmes of study are, by necessity, organised into apparently distinct domains, but pupils should make rich connections across mathematical ideas to develop fluency, mathematical reasoning and competence in solving increasingly sophisticated problems. They should also apply their mathematical knowledge to science and other subjects.

The expectation is that the majority of pupils will move through the programmes of study at broadly the same pace. However, decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. Pupils who grasp concepts rapidly should be challenged through

being offered rich and sophisticated problems before any acceleration through new content. Those who are not sufficiently fluent with earlier material should consolidate their understanding, including through additional practice, before moving on.

Our lessons are structured to enable all children to achieve and have an **opportunity** to make progress with their learning. Each lesson begins with a **CLIC maths** activity, where they have chance to develop their mental strategies, secure number facts and number manipulation. They then **develop** their mathematical fluency with the teacher modelling and explaining before they have a go themselves. Children then have a **reasoning/ problem solving** activity which is a variation of the previous work to demonstrate they have mastered the objective. Children who are ready can then **challenge** themselves with a task that requires applying the learning to a greater depth. We have our own programme of study which is supported with schemes like White Rose to support.

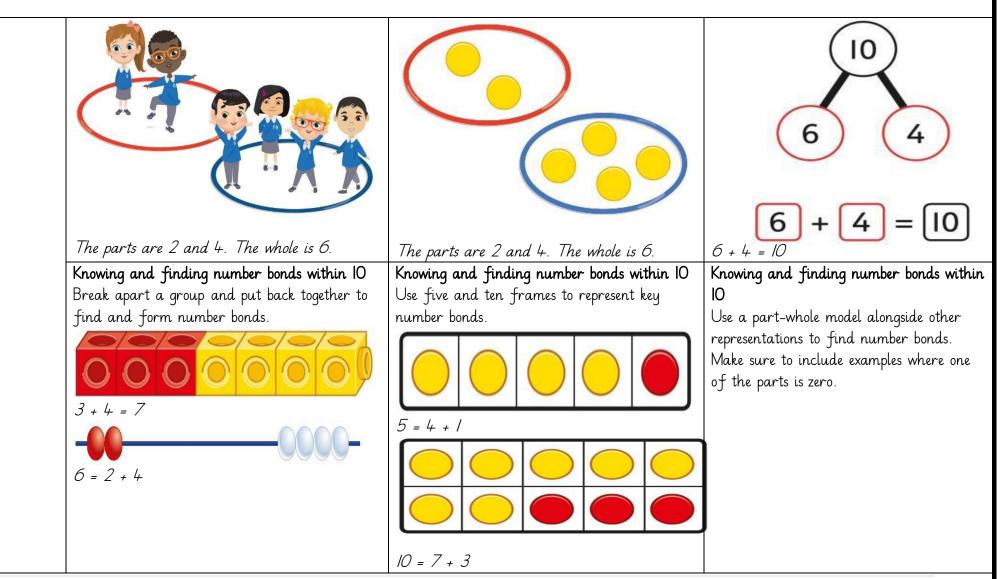
	Year I	Known facts	Essential Knowledge	Year 2	Known facts	Essential Knowledge
Addition	Read, write, and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.	Represent and use number bonds and related subtraction facts within 20. Add and subtract I digit and 2 digit numbers to 20, including zero	I more. Largest number first. Add IO. Ten plus ones. Doubles up to IO. Number bonds 5 and 6. Number bonds 7 and 8. Number bonds 9 and IO. Use number bonds of IO to derive bonds of II.	Recording addition in columns supports place value and prepares for formal written methods with larger numbers.	Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up to 100.	IO more. Add I digit to 2 digit by bridging. Partition second number and add tens and then ones. Add IO and multiples of IO. Doubles up to 20 and multiples of 5. Add near multiples of IO. Number bonds 20, I2 and I3. Number bonds 14 and I5. Number bonds 16 and I7. Number bonds 18 and I9 Partition and recombine.
Subtraction	Read, write, and interpret mathematical statements involving addition (+), subtraction (-) and equals (=) signs.	Represent and use number bonds and related subtraction facts within 20.	I less, Count back, Subtract IO, Teens subtract IO, number bonds: subtraction 5	Recording subtraction in columns supports place value and prepares for formal written methods with larger	Recall and use addition and subtraction facts to 20 fluently and derive and use related facts up	IO less, subtract I digit From 2 digit by bridging, partition second number and

		Add and subtract I digit and 2 digit numbers to 20, including zerO	and 8, subtraction 9 and 10, difference between.			ones, subtract 10 and multiples of 10, subtract near multiples of 10, add near doubles of 10, Number bonds: subtraction 20, 12 and 13, 14 and 15, 16 and 17, 18 and 19, difference between.
Multiplication	Solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations, and arrays with the support of the teacher.	Count in multiples of twos, fives and tens.	Count in 2's Count in 5's Count in 10's Doubles up to 10 Double multiples of 10 Count in 2s, 5s and 10s.	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (÷) and equals (=) signs.	Recall and use X and ÷ facts for the 2, 5 and 10 X tables, including recognising odd and even numbers.	2x table 5x table IOx table Doubles up to 20 Doubles of multiples of 5. Count in 3s.
Division	solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations, and arrays with the support of the teacher.	Count in multiples of twos, fives and tens.	Count back in 2s Count back in 5s Count back in IOs Halves up to IO. Halve multiples of IO How many 2s? 5s? IOs? <i>Test of divisibility</i> - All even numbers will divide by 2	Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (x), division (÷) and equals (=) signs.	Recall and use X and ÷ facts for the 2, 5 and IOX tables, including recognising odd and even numbers.	Division facts (2x table) Division facts (IOx table) Division facts (5x table) Halves up to 20 Review division facts (2 x 5 x IO x tables) Count back in 3s Test all divisibility ~ all numbers ending in 0 will divide by IO. All numbers ending in 5 and 0 will divide by 5.

Vocabulary	Year I	Year 2
Addition	Subject specific: put together, add, addition, altogether, double, total, more than, equals, plus, make, double, near double, one more, two more ten more one hundred more, how many more to make? HOow many more isthan? How much more is? Instructional vocabulary: start from, start with, start at look at point, to show me, show how you show your working	Subject specific: put together, add, addition, altogether, increase, sum, double, total, more than, equals, plus, make, commutative, inverse, sum, partition, near double, how many more to make? Instructional vocabulary: Calculate, tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of show how you
Subtraction	Subject specific: Subtract, takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, How many more? How much greater? How much more is? How many are left over? How many have gone? One less, two less, ten less, How many fewer is than? Difference between, half, halve. Instructional vocabulary: start from, start with, start at look at point, to show me	Subject specific: Subtract, subtraction, how many are left over? takeaway, distance between, difference between, less than, minus, leave, fewer, left over, equals, tens boundary, partition, rearrange, inverse, one less, ten less, one hundred less, how many fewer isthan? how much less is? Difference between, half, halve. Difference, partition, rearrange, inverse, place value. Instructional vocabulary: tell me, describe, name, pick out, discuss, talk about, explain, explain your method, explain how you got your answer, give an example of show how you, solve, investigate.
Multiplication	Subject specific: double, equal groups, array, lots of, count in ones, twos, tens groups of. Instructional vocabulary: carry on, continue repeat what comes next? find, choose, collect. use, make, build. tell me, describe, pick out, talk about, explain, show me, read, write, record	Subject specific: double, equal groups, array, lots of, odd, even, commutative, repeated addition, inverse, groups of, multiply, multiplied by, multiple of, twice, row, column, halve, share, repeated addition, share equally. array row, column double. Instructional vocabulary: carry on, continue, repeat, what comes next? predict describe the pattern describe the rule. find, find all, find different, investigate Give an example of Show how you

Division		Subject specific: share, equal groups, array pairs, divide, divided by, divided into, left over, odd,
	Instructional vocabulary:	even, repeated addition, inverse.
	count out, share out, left, left over	Instructional vocabulary:
		tell me, describe, name, pick out, discuss, talk about, explain, explain your method.
		Explain how you got your answer, give an example of. show how you

KEYSTAGE I

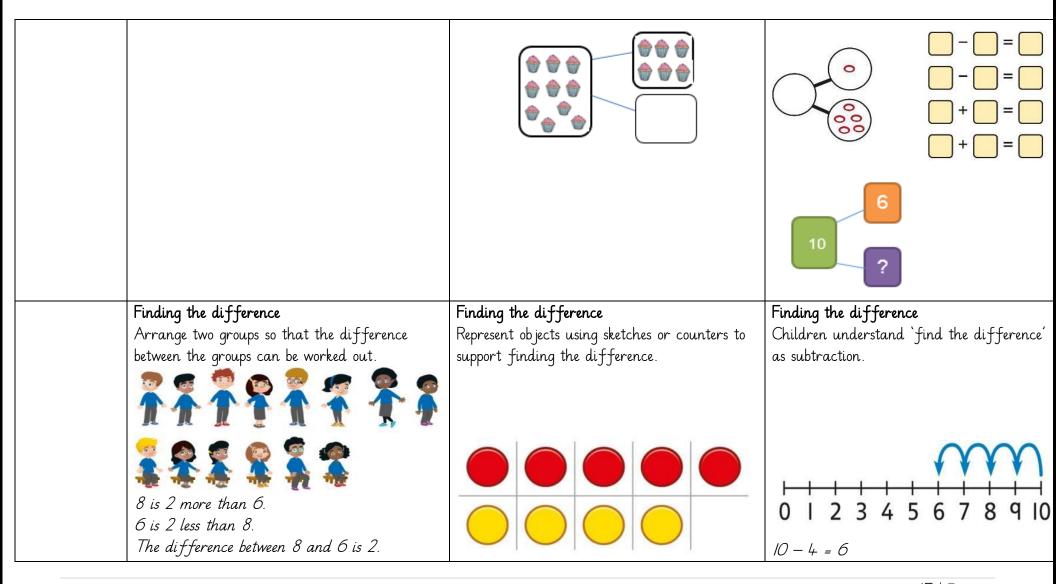

Children develop the core ideas that underpin all calculation. They begin by connecting calculation with counting on and counting back, but they should learn that understanding wholes and parts will enable them to calculate efficiently and accurately, and with greater flexibility. They learn how to use an understanding of IOs and Is to develop their calculation strategies, especially in addition and subtraction.

Addition and Subtraction	Multiplication and Division	Fractions
Children first learn to connect addition and	Children develop an awareness of equal groups and	In Year I, children encounter halves and quarters,
subtraction with counting, but they soon develop	link this with counting in equal steps, starting with	and link this with their understanding of sharing.
two very important skills: an understanding of	2s, 5s and 10s. In Year 2, they learn to connect	They experience key spatial representations of these
parts and wholes, and an understanding of	the language of equal groups with the	fractions, and learn to recognise examples and
unitising IOs, to develop efficient and effective	mathematical symbols for multiplication and	non-examples, based on their awareness of equal
calculation strategies based on known number	division.	parts of a whole.
bonds and an increasing awareness of place value.	They learn how multiplication and division can be	In Year 2, they develop an awareness of unit
Addition and subtraction are taught in a way	related to repeated addition and repeated	fractions and experience non-unit fractions, and
that is interlinked to highlight the link between the	subtraction to find the answer to the calculation.	they learn to write them and read them in the
two operations.	In this key stage, it is vital that children explore and	common format of numerator and denominator.
	experience a variety of strong images and	
	manipulative representations of equal groups,	

A key idea is that children will select methods and	including concrete experiences as well as abstract	
approaches based on their number sense. For	calculations.	
example, in Year I, when faced with 15 – 3 and	Children begin to recall some key multiplication	
15 – 13, they will adapt their ways of	facts, including doubles, and an understanding of	
approaching the calculation appropriately. The	the 2, 5 and 10 times-tables and how they are	
teaching should always emphasise the importance	related to counting.	
of mathematical thinking to ensure accuracy and		
flexibility of approach, and the importance of		
using known number facts to harness their recall		
of bonds within 20 to support both addition and		
subtraction methods.		
In Year 2, they will start to see calculations		
presented in a column format, although this is		
not expected to be formalised until KS2. We show		
the column method in Year 2 as an option;		
teachers may not wish to include it until Year 3.		

YEAR I Pictorial Concrete Abstract YFAR I Counting and adding more Counting and adding more Counting and adding more Children add one more person or object to a Children add one more cube or counter to a Use a number line to understand how to Addition group to find one more. link counting on with finding one more. group to represent one more. one more 5 One more than 4 is 5. One more than 6 is 7 7 is one more than 6. Learn to link counting on with adding more than one 4 5 3 5+3=8 Understanding part-part-whole relationship Understanding part-part-whole relationship Understanding part-part-whole relationship Sort people and objects into parts and Children draw to represent the parts and Use a part-whole model to represent the understand the relationship with the whole. understand the relationship with the whole. numbers.

CALULATION POLICY 2023



		b) 4 + 0 = 4 3 + 1 = 4
Understanding teen numbers as a complete 10	Understanding teen numbers as a complete 10	Understanding teen numbers as a complete
and some more	and some more	10 and some more.
Complete a group of 10 objects and count more.	Use a ten frame to support understanding of	l ten and 3 ones equal 13.
0	a complete 10 for teen numbers.	10 + 3 = 13
I3 is 10 and 3 more.	13 is 10 and 3 more.	
		II Page

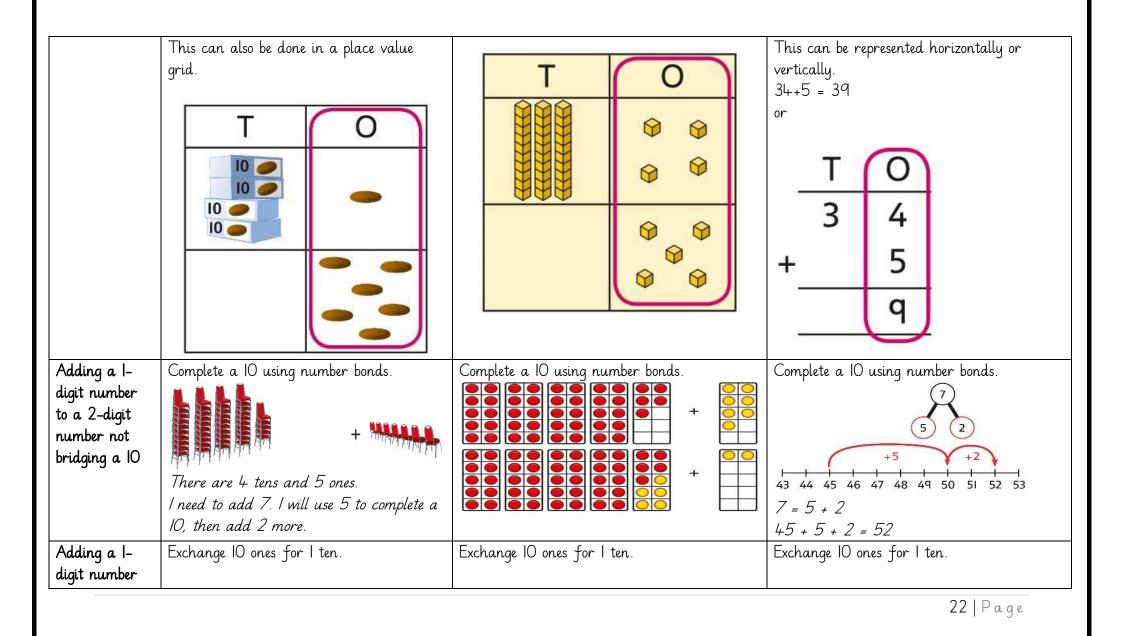
Adding by counting on	Adding by counting on	Adding by counting on
Children use knowledge of counting to 20 to	Children use counters to support and represent	Children use number lines or numbe
find a total by counting on using people or objects. 8 on the bus	their counting on strategy.	tracks to support their counting on strategy. 7 7 7 7 7
Adding the Is	Adding the Is	Adding the Is
Children use bead strings to recognise how to	Children represent calculations using ten	Children recognise that a teen is mo
add the Is to find the total efficiently.	frames to add a teen and Is.	from a 10 and some Is and use the
	·	knowledge of addition within 10 to v
		[KNOWLEAGE O] addition within 10 to v
		efficiently.
		5 5
2 + 3 = 5		efficiently. 3 + 5 = 8
		efficiently.
2 + 3 = 5	2 + 3 = 5 $12 + 3 = 15$	efficiently. 3 + 5 = 8
2 + 3 = 5	2 + 3 = 5 $12 + 3 = 15$ Bridging the IO using number bonds	efficiently. 3 + 5 = 8

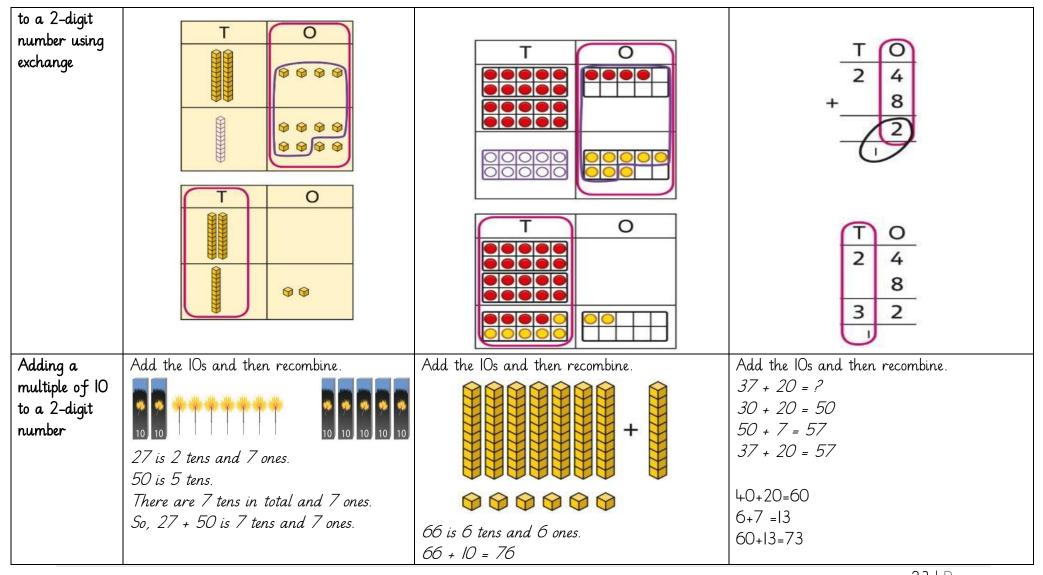
	Children use a bead string to complete a 10 and understand how this relates to the	Children use counters to complete a ten frame and understand how they can add using	Use a part-whole model and a number lir to support the calculation.
	addition. 7 add 3 makes 10. So, 7 add 5 is 10 and 2 more.	knowledge of number bonds to 10.	4 1 3 9 10 11 12 13 9+4 = 13
Year I	Counting back and taking away	Counting back and taking away	Counting back and taking away
Subtraction	Children arrange objects and remove to find	Children draw and cross out or use counters	Children count back to take away and us
	how many are left. I less than 6 is 5. 6 subtract 1 is 5.	to represent objects from a problem.	a number line or number track to suppor the method. 876 9 - 3 = 6 7 = 9
			13 P a g e

	I3-8 = 5	
Finding a missing part, given a whole and a part Children separate a whole into parts and understand how one part can be found by subtraction.	Finding a missing part, given a whole and a part Children represent a whole and a part and understand how to find the missing part by subtraction. 5 - 4 = 10 10 6 7	Finding a missing part, given a whole and a part Children use a part-whole model to support the subtraction to find a missing part. $\overline{7-3} = ?$ Children develop an understanding of the relationship between addition and subtraction facts in a part-whole model.
	10 – 6 = 4	I 4 P a g e

	5 - 4 = /	The difference between 10 and 6 is 4.
	The difference between 5 and 4 is l.	
Subtraction within 20	Subtraction within 20	Subtraction within 20
Understand when and how to subtract Is	Understand when and how to subtract Is	Understand how to use knowledge of bond
	efficiently.	within 10 to subtract efficiently.
Use a bead string to subtract Is efficiently. 5 - 3 = 2	$ \begin{array}{c} $	5 - 3 = 2 15 - 3 = 12
	5 - 3 = 2	
	15 - 3 = 12 Subtracting IOs and Is	Subtracting IOs and Is
5	For example: 18 - 12	Use a part-whole model to support the
Subtract 12 by first subtracting the 10, then	Use ten frames to represent the efficient	calculation.
First subtract the 10, then take away 2.	method of subtracting 12.	14

	Subtraction bridging IO using number bonds For example: $12 - 7$ Arrange objects into a IO and some Is, then decide on how to split the 7 into parts. \overrightarrow{I} \overrightarrow{I} I	Subtraction bridging IO using number bonds Represent the use of bonds using ten frames. For 13 – 5, 1 take away 3 to make 10, then take away 2 to make 8.	$ \begin{array}{r} 19 - 14 \\ 19 - 10 = 9 \\ 9 - 4 = 5 \\ So, 19 - 14 = 5 \end{array} $ Subtraction bridging IO using number bonds Use a number line and a part-whole model to support the method. $ 13 - 5 \end{array} $
Year I Multiplication	Recognising and making equal groups Children arrange objects in equal and unequal groups and understand how to recognise whether they are equal. A B C	Recognising and making equal groups Children draw and represent equal and unequal groups. B	Describe equal groups using words Three equal groups of 4. Four equal groups of 3.
			17 P a a e

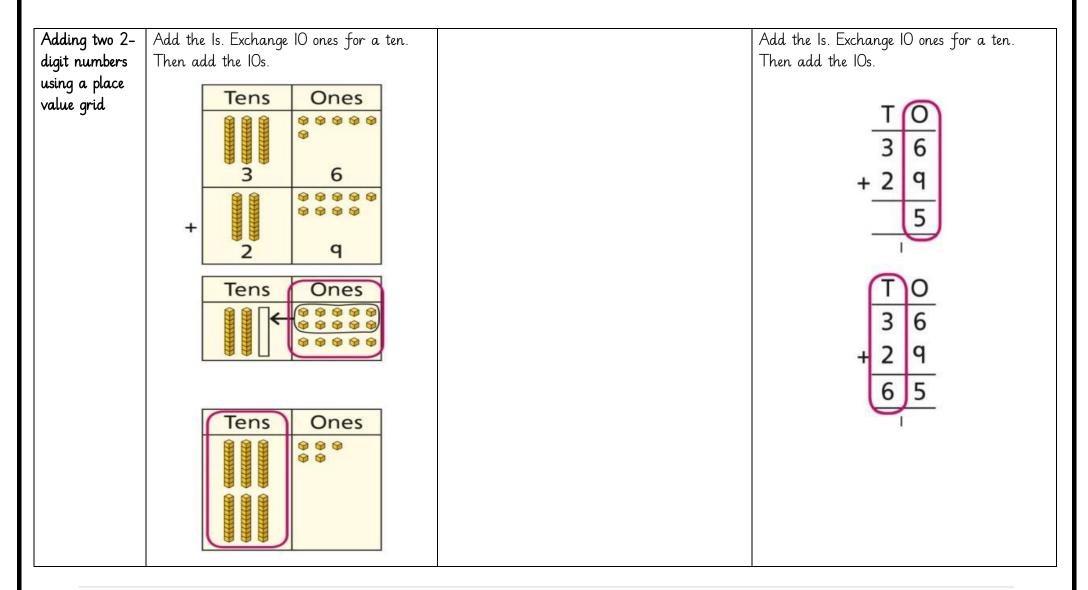

	Finding the total of equal groups by counting in 2s, 5s and IOs There are 5 pens in each pack 510152025303540	Finding the total of equal groups by counting in 2s, 5s and IOs IOO squares and ten frames support counting in 2s, 5s and IOs. 1 2 3 4 5 6 7 8 9 10 1 1 2 13 14 15 16 17 18 19 20 2 1 22 23 24 25 26 27 28 29 30 3 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 3 9 40 4 1 4 2 4 3 4 4 4 5 4 6 4 7 4 8 4 9 50	Finding the total of equal groups by counting in 2s, 5s and 10s Use a number line to support repeated addition through counting in 2s, 5s and 10s. 10 10 10 10 10 0 10 20 30 40 50
Year I Division	Crouping Learn to make equal groups from a whole and find how many equal groups of a certain size can be made. Sort a whole set people and objects into equal groups. There are 10 children altogether.	Grouping Represent a whole and work out how many equal groups.	Grouping Children may relate this to counting back in steps of 2, 5 or 10. 00000 00000 0000000000 0000000000 000


There are 5 groups.	There are 2 groups. Arrays (rectangular arrangements to show equal groups)	
Share a set of objects into equal parts and	Sharing Sketch or draw to represent sharing into equal parts. This may be related to Fractions.	Sharing <i>IO shared into 2 equal groups gives 5 in</i> <i>each group.</i>

		Year 2				
	Concrete	Pictorial	A	bstract		
Year 2 Addition						
Understanding 10s and 1s	Group objects into IOs and Is.	Understand IOs and Is equipment, and link with visual representations on ten frames.		epresent numbers or sing equipment or n		d,
		WINDOW WINDOW WINDOW WINDOW & &		Tens	Ones	
	Bundle straws to understand unitising of IOs.				\$	
			100	3	2	
				Tens	Ones	
			[4	3	
Adding IOs	Use known bonds and unitising to add IOs. <i>I know that</i> $4 + 3 = 7$.	Use known bonds and unitising to add IOs. * $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$ $*$		lse known bonds and	l unitising to add l	Os.

20 | P a g e

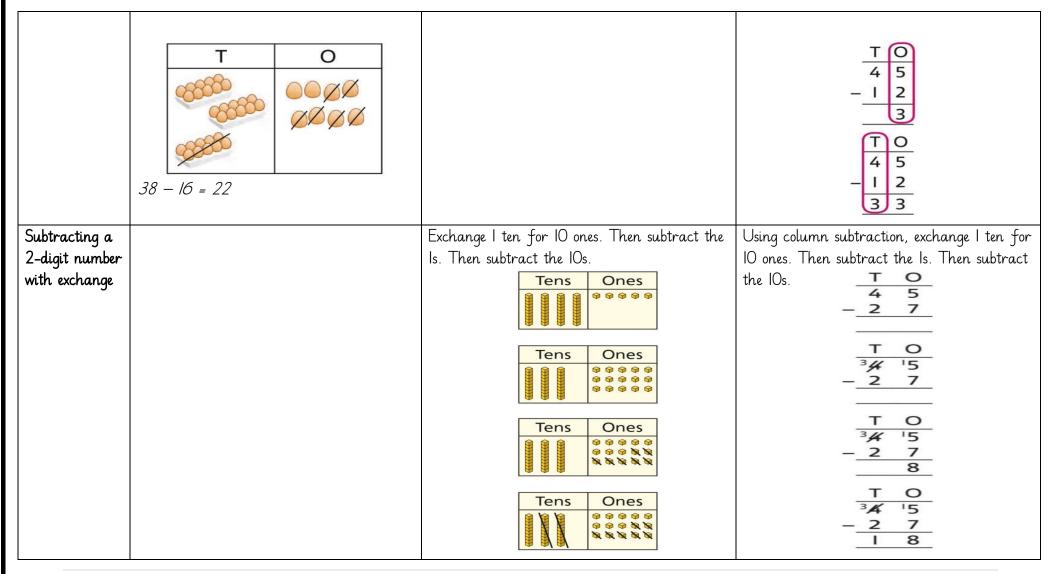
	So, I know that 4 tens add 3 tens is 7 tens.			
Adding a I- digit number to a 2-digit number not bridging a IO.	Add the Is to find the total. Use known bonds within IO. 10 10 10 10 10 10 4/ is 4 tens and 1 one. 4/ add 6 ones is 4 tens and 7 ones.	Add the Is. + + + + + + + + + + + + + + + + + + +	4 tens + 3 tens = 7 tens 40 + 30 = 70 Add the Is. Understanding the link between co and using known number facts. C should be encouraged to use known bonds to improve efficiency and o 1	Children 1 number



		A 100 square can support this understanding.	Moving on to:
		I 2 3 4 5 6 7 8 9 10 II 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	46 + 27 = 60 + 13 = 73 Balance in the equation
		31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	I4 = 8 + 6, 7+6=8+5 □= I3+9
		51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70	3+ □+6 =I6 I++ �= I5+27
		71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90	
Adding a	Add the IOs using a place value grid to	q1q2q3q4q5q6q7q8qq100Add the IOs using a place value grid to	Add the IOs represented vertically. Children
multiple of 10	support.	support.	must understand how the method relates to
to a 2-digit number using columns			unitising of IOs and place value. TO IG + 30
	Toffee opples IO Toffee opples		4 6
	16 is 1 ten and 6 ones. 30 is 3 tens.	16 is 1 ten and 6 ones. 30 is 3 tens.	+ 3 = 4 ten + 3 tens = 4 tens
	There are 4 tens and 6 ones in total.	There are 4 tens and 6 ones in total.	16 + 30 = 46

Adding two 2- digit numbers	Add the IOs and Is separately. 3 + 3 = 8 There are 8 ones in total.	Add the IOs and Is separately. Use a part- whole model to support. 32 + II	Add the IOs and the Is separately, bridging IOs where required. A number line can support the calculations. $+10$ $+10$ $+3$ $+2$ $\frac{1}{7}$ $\frac{0}{17}$ +25 $17 + 25$
	3 + 2 = 5 There are 5 tens in total. 35 + 23 = 58	= 0 + 32 + 0 = 42 42 + = 43 32 + = 43	
Adding two 2- dogot numbers using a place value grid.	Add the Is. Then add the IOs.		Add the Is. Then add the IOs $ \begin{array}{r} $

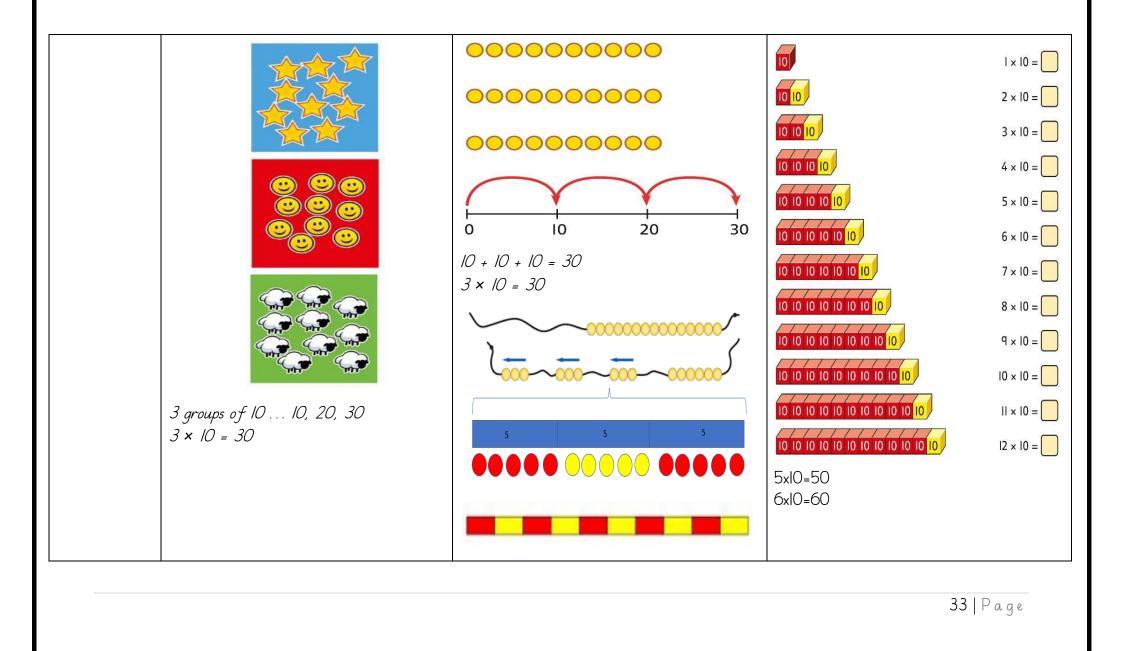
25 | P a g e



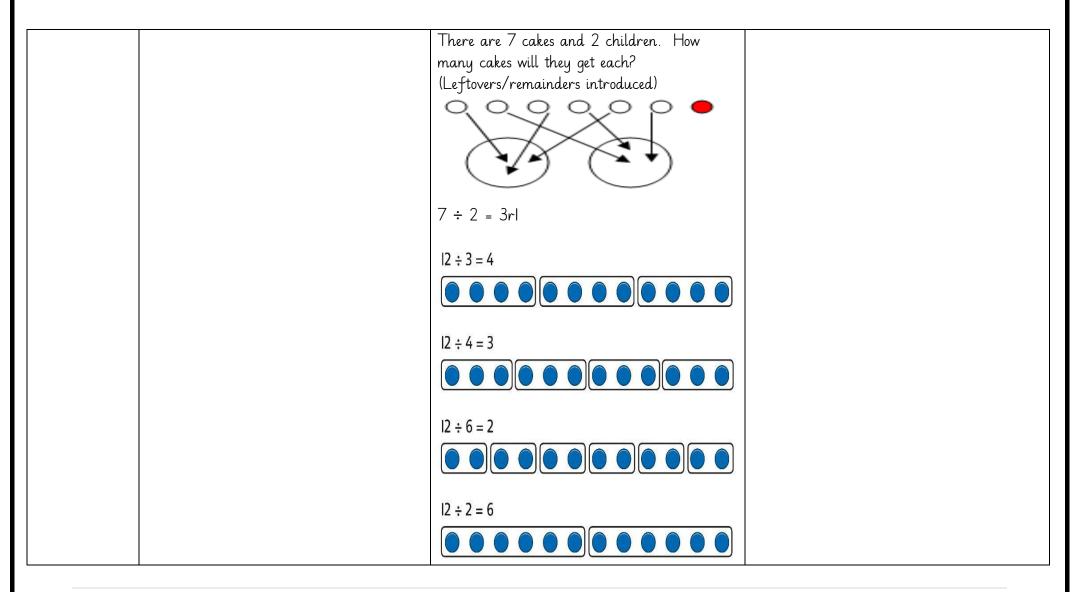
26 | P a g e

Year 2				
Subtraction Subtracting multiples of IO	Use known number bonds and unitising to subtract multiples of IO.	Use known number bonds and unitising to subtract multiples of 10. 100 30 $10 - 3 = 7$ $5 - 10 + 10 + 2 + 10 = 7 + 10$	Use known number bonds and unitising to subtract multiples of 10.	
	8 subtract 6 is 2. So, 8 tens subtract 6 tens is 2 tens.	So, 10 tens subtract 3 tens is 7 tens.	7 tens subtract 5 tens is 2 tens. 70 – 50 = 20	
Subtracting a single-digit number	Subtract the Is. This may be done in or out of a place value grid.	Subtract the Is. This may be done in or out of a place value grid.	Subtract the Is. Understand the link between counting back and subtracting the Is using known bonds. $\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Subtracting a	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.	Bridge 10 by using known bonds.
single-digit number bridging 10	35 – 6 I took away 5 counters, then I more.	35 – 6 First, I will subtract 5, then I.	-4 -4 $16 17 18 19 20 21 22 23 24 25 26$ $24 - 6 = ?$ $24 - 4 - 2 = ?$
Subtracting a	Exchange I ten for 10 ones. This may be	Exchange I ten for 10 ones.	Exchange I ten for 10 ones.
single-digit	done in or out of a place value grid.		ТО
number using	ТО	TO	2 5
exchange			- 7 8 T O
			2 5 7 1 8 25 - 7 = 18

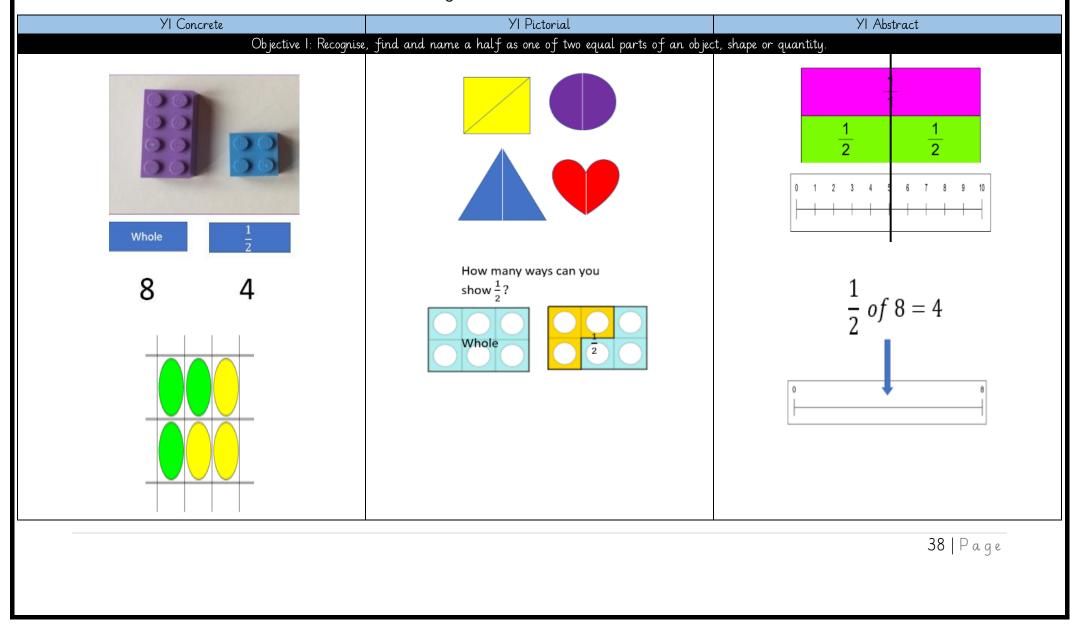

Subtracting	Subtracting by taking away.	Sub	tract	the I	Os a	nd tl	re Is					Subtract the IOs and the Is.
a 2-digit	0000000000	Thi	s can	be ro	epres	ented	, on	a 10) sqi	iare		This can be represented on a number line.
number	0000000000		2	3	4	5	6	7	8	q	10	-10 -10 -10 -1
	0000000000	Ш	12	13	14	15	16	17	18	19	20	
		2	22	23	24	25	26	27	28	29	30	23 33 43 53 63 64
	ØØØØØØØØØØ	3	32	33	34	35	36	37	38	39	40	64 - 41 = ?
	Ø 61 – 18	4	42	43	44	45	46	47	48	49	50	64 - 1 = 63
	01 – 18 I took away I ten and 8 ones.	5	52	53	54	55	56	57	58	59	60	63 - 40 = 23
	1 100k amag 1 1011 and 0 01160.	6	62	63	64	65	66	67	68	69	70	64 - 41 = 23
		71	72	73	74	75	76	77	78	79	80	-5 - 10 - 10
		8	82	83	84	85	86	87	88	89	90	21 26 36 46
		q	92	93	94	95	96	97	98	qq	100	46 - 20 = 26 26 - 5 = 21
												20 - 5 = 21 46 - 25 = 21
Subtracting a	Subtract the Is. Then subtract the IOs.	Sub	tract	the I	s. Th	ien s	ubtro	act t	he IC	Ds.		Using column subtraction, subtract the ls.
2-digit number	This may be done in or out of a place		Γ	Та	-		0		~			Then subtract the IOs.
using place	value grid.			Te	ns		100	Dn	10000			
value and columns			Ŕ				Ø	ØØ	Ø	6		
coumnts												

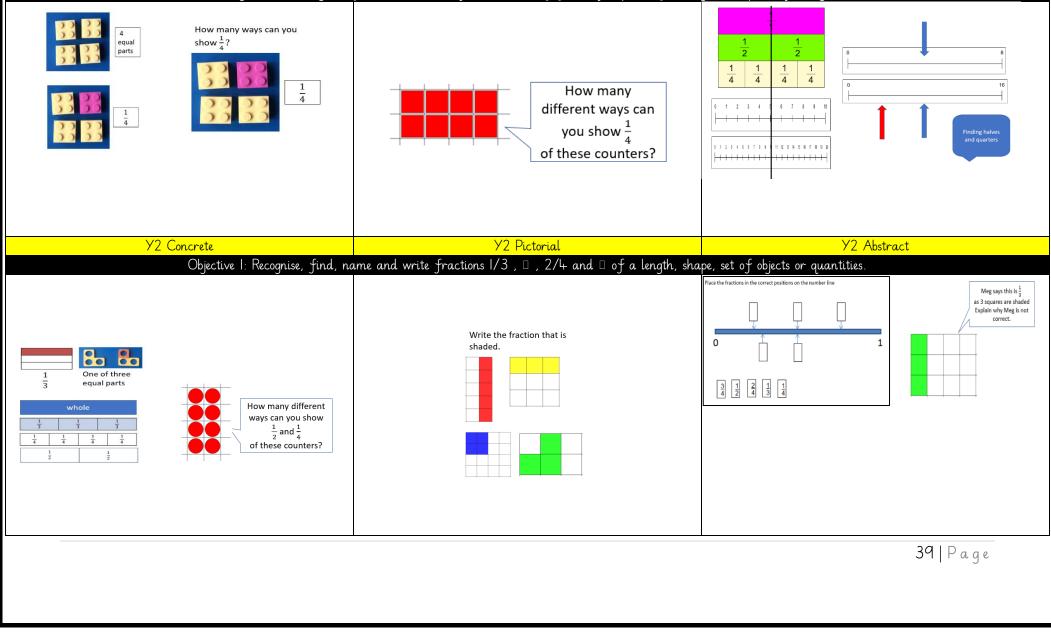
30 | P a g e

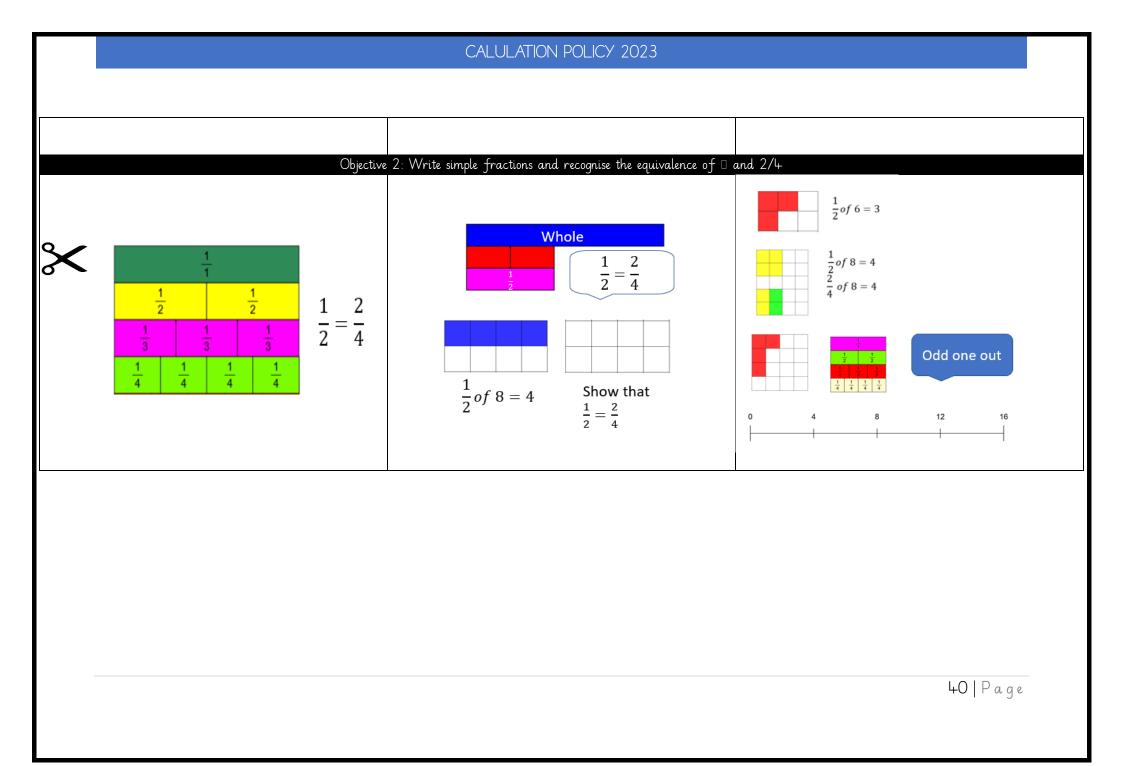

Year 2 Multiplication			
Equal groups and repeated addition	Recognise equal groups and write as repeated addition and as multiplication. 3 groups of 5 chairs 15 chairs altogether	Recognise equal groups using standard objects such as counters and write as repeated addition and multiplication. <i>3 groups of 5</i> <i>15 in total</i> Use Cuisenaire rods to create simple bar models.	Use a number line and write as repeated addition and as multiplication. 5 + 5 + 5 = 15 $3 \times 5 = 15$ Or Use bar models to reinforce understanding. ? 5 + 5 + 5 = 5
Using arrays to represent multiplication and support understanding	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition.	Understand the relationship between arrays, multiplication and repeated addition. $5 \times 5 = 25$

	4 groups of 5	4 groups of 5 5 groups of 5	
Understanding commutativity	Use arrays to visualise commutativity.	Form arrays using counters to visualise commutativity. Rotate the array to show that orientation does not change the multiplication. This is 2 groups of 6 and also 6 groups of 2.	Use arrays to visualise commutativity. 4 + 4 + 4 + 4 + 4 = 20 5 + 5 + 5 = 20 $4 \times 5 = 20$ and $5 \times 4 = 20$
Learning ×2, ×5 and ×10 table facts	Develop an understanding of how to unitise groups of 2, 5 and 10 and learn corresponding times-table facts.	Understand how to relate counting in unitised groups and repeated addition with knowing key times-table facts.	Understand how the times-tables increase and contain patterns.

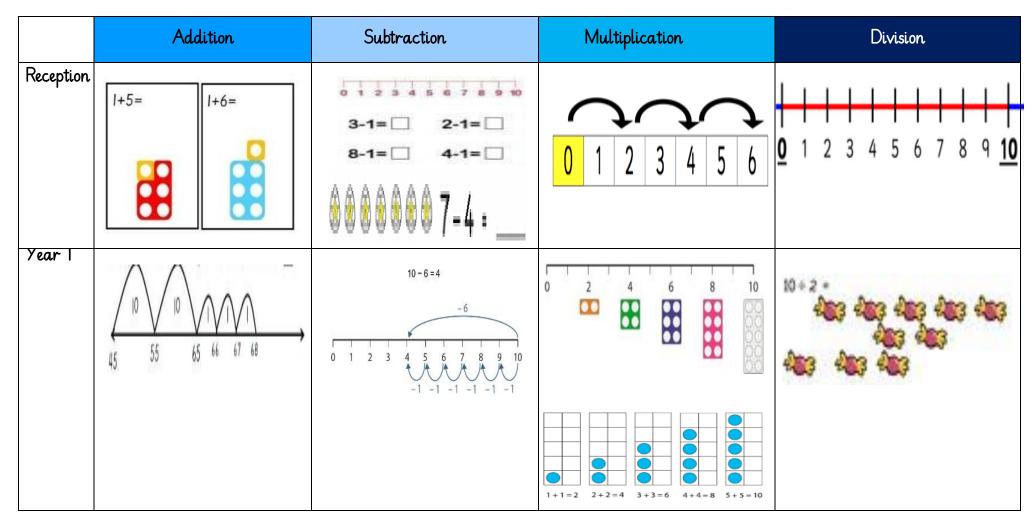
Year 2 Division		Build tables using counting stick- forwards and backwards and with missing jumps using doubling and halving.	
Sharing equally	Start with a whole and share into equal parts, one at a time.	Represent the objects shared into equal parts using a bar model.	Use a bar model to support understanding of the division. 18 $18 \div 2 = 9$


Grouping Equally	 Interview of the equal groups. A divided into 4 equal groups. 	Understand the relationship between grouping and the division statements. $20 \div 2 = 10$	Understand how to relate division by grouping to repeated subtraction. Understand how to relate division by Understand how to relate divis
---------------------	--	--	--


Understand the relationship between Link equal grouping with repeated subtraction Relate times-table knowledge directly to Using known times-tables to multiplication facts and division. and known times-table facts to support division. solve divisions. division. $| \times |0 = |0|$ $2 \times 10 = 20$ I used the IO $3 \times 10 = 30$ times-table $4 \times 10 = 40$ to help me. Ó in 20 $5 \times 10 = 50$ 30 40 divided by 4 is 10. $6 \times 10 = 60$ $3 \times 10 = 30$. $7 \times 10 = 70$ Use a bar model to support understanding of $8 \times 10 = 80$ the link between times-table knowledge and I know that 3 groups of 10 makes 30, so I 4 groups of 5 cars is 20 cars in total. division. know that 30 divided by 10 is 3. 20 divided by 4 is 5. 60 10 10 6 3 × 10 = 30 sc


37 | P a g e

Progression in Fractions ~ KSI



Objective 2: Recognise, find and name a quarter as one of four equal parts of an object, shape or quantity.

Standard Written Method

Year 2	59 <u>143+</u>	⁶ 7 ¹ 3 49-	8 x 5 = 40	35 ÷ 5 = 7
	102	24		
Year 3	523 <u>,393+</u> 916	^⁴ 5 ^¹ 23 <u>393-</u> 130	59 <u>6x</u> 54 (6x9) <u>300</u> (6x50) 354	8] 32
Year 4	1,312 <u>3,094+</u> 4,406	6, ¹ 2 ¹ 73 <u>1,093-</u> 5,180	159 <u>16x</u> 954 <u>11,590+</u> 2,544	1 <u>35</u> 7)945

Year 5	13,123 <u>3</u> 0,943+ 44,066	6 ['] 2, ['] 743 <u>1</u> 0,923- 51,820	2259 <u>6x</u> 54 300 1,200 <u>12,000+</u> 13,554	279 r 5 6)1679
Year 6	613,123 1310,943+ 744,066	6112,1743 100,923- 511,820	2259 46x 13,554 901,360+ 103,914	$\begin{array}{r} 0389.739\\ 23 8964\\ \underline{69} \\ 46 206\\ \underline{69} \\ 184 \\ 92 \\ 0224\\ 115 \\ 0224\\ 138 \\ \underline{207} \\ 161 \\ 0090\\ \underline{69} \\ 210\\ \underline{207} \\ 003\end{array}$

43 | P a g e